

Kronprinzenstraße 37, 45128 Essen Postfach 1032 42, 45032 Essen Telefon (0201) 178-0 www.ruhrverband.de

Inhalt

Vorwort	4
1 Witterungsverlauf	7
2 Niederschlag	8
 3 Abfluss 3.1 Unbeeinflusster oder natürlicher Abfluss 3.2 Gemessener oder tatsächlicher Abfluss 3.3 Einhaltung der Grenzwerte 3.4 Vergleich zwischen unbeeinflusstem und gemessenem Abfluss 3.5 Hochwasserereignisse 	11 12 13 16 17
4 Niederschlags- (N), Abfluss- (A) und Unterschiedshöhen (U)	17
 5 Entnahme und Entziehung 5.1 Anzahl der Entnehmer und Entnahmestellen 5.2 Entnahmewassermengen in den einzelnen Entnahmeklassen 5.3 Kühlwasserentnahmemengen 5.4 Entziehung 	18 18 19 19 21
6 Baumaßnahmen mit Einfluss auf die Talsperrenbewirtschaftung	23
7 Zuschussleistungen aus den Talsperren7.1 Grundlagen und Begriffe7.2 Jahreszeitlicher Verlauf	23 23 24
8 Stauinhaltsbewegung	28
9 Hydrologischer und meteorologischer Mess- und Beobachtungsdienst	32

Tabellenanhang	33
Meteorologische Daten amtlicher Wetterstationen im Einzugsgebiet der Ruhr	34
Entnahme und Entziehung im Einzugsgebiet der Ruhr	35
Stauinhaltsänderungen der Talsperren	36
Ermittlung des Abflusses der Ruhr an verschiedenen Kontrollquerschnitten	39
5-Tage-übergreifender Mittelwert des Abflusses der Ruhr an den Kontrollquerschnitten Villigst, Hattingen und Mülheim	51
Verzeichnis der zuschusspflichtigen Tage nach dem RuhrVG	55
Nach dem RuhrVG erforderlicher Zuschuss – monatsweise Zusammenstellung	61
Unbeeinflusster Abfluss an der Ruhrmündung	62
Gemessener Abfluss an den Pegeln Villigst, Hattingen und Mülheim	63
Pegelanlagen des Ruhrverbands	68
Regenmessstationen des Ruhrverbands	70

Contents

Preface	5
1 Weather conditions	7
2 Precipitation	8
 3 Runoff 3.1 Unaffected or natural runoff 3.2 Measured or real runoff 3.3 Compliance with the limit values 3.4 Comparison of unaffected and measured run 3.5 Flood events 	11 12 13 16 noff 17
4 Precipitation and runoff depths; differences between the former and the latter	17
 Water abstractions and water losses in the Ruhr catchment area Number of water abstraction points Water abstraction according to utilization category Cooling water demand Water losses 	18 18 19 19 21
6 Construction work exerting an impact on reservoir management	23
7 Discharge from the reservoirs7.1 Basic elements and definitions7.2 Seasonal fluctuations	23 23 24
8 Fluctuation of reservoir volumes	28
9 Hydrological and meteorological measurement and observation service	32

Annex of tables	33
Meteorological data measured at the weather stations in the Ruhr catchment area	34
Water abstraction and water losses in the Ruhr catchment area	35
Daily fluctuations of reservoir volume	36
Determination of runoff in the Ruhr River at particular cross-sections	39
5-day-moving average of runoff in the Ruhr River at the Villigst, Hattingen and Mülheim cross-sections	51
List of days with additional supply from the reservoirs in conformance with the Ruhr Association Act (RuhrVG)	55
List of monthly additional supply volumes according to the RuhrVG	61
Unaffected runoff at the Ruhr River mouth	62
Runoff at the Villigst, Hattingen and Mülheim gauging stations	63
Discharge gauging stations	68
Rain gauging stations	70

Professor Dr.-Ing. Norbert Jardin

Vorwort

Das Abflussjahr 2023 war durch zwei meteorologische Besonderheiten gekennzeichnet. Einerseits beendete es im Ruhreinzugsgebiet die vorangegangene durchgängige Reihe von 14 Abflussjahren in Folge (2009 bis 2022) mit einem Niederschlagsdefizit. Andererseits wies das Abflussjahr 2023 erneut eine zweistellige Mitteltemperatur für das Gesamteinzugsgebiet der Ruhr auf.

Mit einer Niederschlagssumme von 1.246 mm war das Abflussjahr 2023 um 199 mm bzw. 19 % nasser als das langjährige Mittel 1927/2022. Die defizitäre Niederschlagsbilanz der vorangegangenen 14 Abflussjahre konnte damit zwar entsprechend verringert werden, das Defizit liegt jedoch noch immer um 15 % über einem durchschnittlichen Jahresniederschlag. Insgesamt gab es im Abflussjahr 2023 acht Monate mit einem Niederschlagsüberschuss, besonders nass waren hierbei Januar, März und August.

Mit 10,1 °C wies das Abflussjahr 2023 erneut eine zweistellige Mitteltemperatur für das Gesamteinzugsgebiet der Ruhr auf. Es war im Vergleich zum langjährigen Mittelwert der Zeitreihe 1991/2020 um 1,2 Grad zu warm und damit zusammen mit dem vorangegangenen Abflussjahr 2022 das wärmste Abflussjahr seit 1881. Auch einzelne Monate waren durch hohe Temperaturen geprägt. So wurden am Jahreswechsel 2022/2023 langjährige Temperaturrekorde gebrochen, der Juni 2023 war der drittwärmste Juni und der September 2023 der wärmste September seit 1881.

Aufgrund der niederschlagsreichen Witterung und dadurch oftmals ausreichender Wasserführung war im Abflussjahr 2023 an den Kontrollguerschnitten der Ruhr nur an rund 50 % der durchschnittlichen Tagesanzahl Zuschuss aus dem Talsperrensystem erforderlich. Dadurch resultierte auch ein um 16 % über dem Durchschnitt liegender Stauinhalt am Ende des Abflussjahres. Die überregionale Wasserversorgung des Ruhrgebietes unter Einhaltung der vorgeschriebenen Grenzwerte war im Abflussjahr 2023 jederzeit sichergestellt.

Das Abflussjahr 2023 ist das fünfte Abflussjahr in Folge, in dem eine vom Ruhrverband beantragte und vom Umweltministerium genehmigte Reduzierung der im Ruhrverbandsgesetz (RuhrVG) vorgeschriebenen Grenzwerte für den Mindestabfluss in der Ruhr erforderlich war. Dies zeigt einmal mehr die Bedeutsamkeit einer dauerhaften Reduzierung dieser Grenzwerte im RuhrVG, dessen Änderung vom Landtag NRW bereits in die parlamentarische Beratung gebracht ist und in Bälde verabschiedet werden soll.

Essen, im November 2024

Prof. Dr.-Ing. Norbert Jardin, Vorsitzender des Vorstands, Vorstand Technik und Flussgebietsmanagement

Preface

The 2023 water year displayed two special meteorological features. On the one hand, it ended the previous period of 14 water years (2009-2022) with a precipitation deficit in the Ruhr catchment area. On the other hand, a two-figure mean temperature was again recorded for the entire Ruhr catchment area during the year.

With total precipitation of 1.246 mm, the 2023 water year was 199 mm or 19 % wetter than the long-term average for 1927-2022. Although this lessened the precipitation deficit recorded for the previous 14 water years, the deficit is still 15 % higher than the average annual precipitation. During the 2023 water year, there were eight months in total with a precipitation surplus; the months of January, March and August were especially wet.

A two-digit mean temperature, of 10.1 °C, was again recorded for the entire Ruhr catchment area during the 2023 water year. In comparison with the long-term mean value for the period 1991-2020, this was 1.2 degrees too warm, making the 2022 and 2023 water years the warmest since 1881. This period also contained individual months with high temperatures. At the turn of the year 2022/2023, for example, the long-term temperature record was broken; June 2023 was the third warmest June, and September 2023 the warmest September, since 1881.

Due to the rainy weather and the resulting sufficient discharge, the number of days on which the reservoirs had to supply additional water for the control sections of the Ruhr River, is only about 50 % of the average number of days on which this was necessary in the past. As a result, the volume of water stored in the reservoirs was 16 % above average at the end of the water year. The reservoirs were thus able to consistently guarantee a secure supraregional water supply in the Ruhr region, while maintaining the minimum runoff values prescribed by law, during the 2023 water year.

The 2023 water year was the fifth in a row during which Ruhrverband applied for a lowering of the limit values for minimum runoff in the Ruhr River set down in the Ruhr River Association Act (RuhrVG) – a request granted by the Ministry of the Environment. This shows once again the importance of lowering these limit values permanently in the RuhrVG. This change in the law is already being deliberated by the state parliament of North Rhine-Westphalia and is expected to be adopted soon.

Berichtszeitraum

Berichtszeitraum ist das Abflussjahr 2023 mit folgenden Zeitabschnitten:

- Winterhalbjahr 2023 vom 1. November 2022 bis zum 30. April 2023 mit 181 Tagen,
- Sommerhalbjahr 2023 vom 1. Mai 2023 bis zum 31. Oktober 2023 mit 184 Tagen,
- Abflussjahr 2023 vom 1. November 2022 bis zum 31. Oktober 2023 mit 365 Tagen.

1 Witterungsverlauf

Das Wettergeschehen hat einen maßgeblichen Einfluss auf die Wassermengenwirtschaft im Ruhreinzugsgebiet. So bestimmt die Lufttemperatur die Niederschlagsart und ist im Zusammenhang mit der Sonnenscheindauer ein Indikator für das Maß der Verdunstung. Gemeinsam beeinflussen die Niederschlagsart und Verdunstung die Abflussbildung des gefallenen Niederschlags, wobei die Hauptwirkgröße des abflussbildenden Niederschlags der Niederschlag selbst ist. In Kapitel 1 wird daher die mittlere monatliche Lufttemperatur und in Kapitel 2 der Niederschlag im Ruhreinzugsgebiet dargestellt.

Insgesamt lässt sich die Witterung für das Abflussjahr 2023 wie folgt zusammenfassen:

Im Abflussjahr 2023 lag die Mitteltemperatur des Gesamteinzugsgebietes der Ruhr wie im Vorjahr bei 10,1 °C. Es war im Vergleich zum langjährigen Mittelwert der Zeitreihe 1991/2020¹ um 1,2 °C und gegenüber der Vergleichsperiode 1961/1990 um 2,1 °C zu warm. Das Abflussjahr 2023 ist damit zusammen mit dem vorangegangenen Abflussjahr 2022 das wärmste Abflussjahr seit 1881, die Jahresmitteltemperatur ist erneut zweistellig. Im Gegensatz zu den vorangegangenen vierzehn Abflussjahren in Folge mit einem Niederschlagsdefizit endete das Abflussjahr 2023 mit einem deutlichen Niederschlagsüberschuss (siehe Kapitel 2).

Zur Veranschaulichung sind in Bild 1 die mittleren monatlichen Lufttemperaturen im Ruhreinzugsgebiet für das Abflussjahr 2023 im Vergleich zum Mittelwert der neuen Klimareferenzperiode 1991/2020 dargestellt. Die neue Klimareferenzperiode weist für das Ruhreinzugsgebiet durchgängig für alle Monate höhere Monatsmitteltemperaturen auf als die bisher gültige Klimareferenzperiode 1981/2010.

Im Folgenden werden die Lufttemperaturen im Einzugsgebiet der Ruhr (nachfolgend in der Einheit Grad Celsius [°C] angegeben) für die einzelnen Monate des Abflussjahres 2023 kurz charakterisiert.

Das Winterhalbjahr 2023 begann mit einem zu warmen **November 2022**, in dem milde Strömungen aus südwestlichen bzw. südlichen Richtungen den Witterungsverlauf prägten. Mit einer

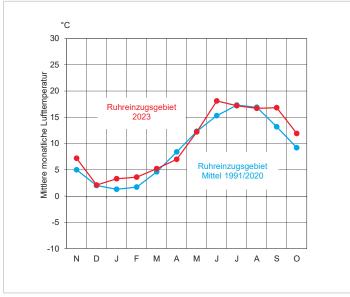


Bild 1: Mittlere monatliche Lufttemperaturen des Abflussjahres 2023 im Ruhreinzugsgebiet im Vergleich zu den langjährigen Mittelwerten 1991/2020

Fig. 1: Mean monthly air temperatures for the Ruhr catchment area measured during the 2023 water year in comparison with the average values for the period 1991/2020

mittleren Temperatur von 7,2 °C im Ruhreinzugsgebiet war der November um 2,2 °C wärmer als in der Referenzperiode 1991/2020. Er war zusammen mit dem November 2006 der sechstwärmste November seit 1881. Der **Dezember** war geprägt durch eine erste Hälfte mit zu kalter und einer zweiten Hälfte mit zu warmer Witterung. Insgesamt war er bei einer Durchschnittstemperatur von 2,1 °C nahezu durchschnittlich warm, die Durchschnittstemperatur lag lediglich um 0,1 Grad über der mittleren Temperatur der Referenzperiode. Am Monatsende wurden verbreitet deutschlandweit Temperaturrekorde aufgestellt. So betrug an der DWD Station Essen-Bredeney am 31.12.2022 die Maximaltemperatur 16,8 °C, dies bedeutet den neuen Höchstwert für Dezember der seit 1953 bestehenden Zeitreihe. An dieser Station ist die Tagesmitteltemperatur dieses Tages von 15,4 °C die höchste eines kalendarischen Winters (Dezember bis Februar). Üblicherweise treten diese Wert Ende Februar auf.

Außergewöhnlich mild begann der **Januar 2023** mit zwei teils frühlingshaft warmen Tagen. Während die erste Monatshälfte durch mildes Wetter geprägt war, zeigte sich die zweite Monatshälfte deutlich kälter. Im Ruhreinzugsgebiet wurde im Januar eine mittlere Temperatur von 3,3 °C gemessen, dies ist 2,0 °C wärmer als die Referenzperiode. Der **Februar** begann milder als er endete,

Zur Einordnung des Witterungsverlaufs des beschriebenen Abflussjahres dienen seit 2021 als Vergleich für Temperatur die langjährigen Mittelwerte der neuen Klimareferenzperiode von 1991/2020, die für den Ruhrwassermengenbericht auf Basis von Abflussjahren und damit auf Basis des Zeitraums November 1990 bis Oktober 2020 ermittelt wurden.

um die Monatsmitte gab es einen frühlingshaft milden Witterungsabschnitt. Mit einer Monatsmitteltemperatur von 3,6 °C war er um 1,9 °C wärmer als die Referenzperiode. In Summe fiel der meteorologische Winter mit einer Durchschnittstemperatur von 3,0 °C um 1,3 °C wärmer aus als im Vergleichszeitraum 1991/2020. Es gab erst zwölf Mal wärmere Winter im Ruhreinzugsgebiet seit Aufzeichnungsbeginn im Jahr 1881.

Im **März** gab es einen häufigen Wechsel zwischen kalter Polarluft und mildere Mittelmeerluft. So begann der meteorologische Frühling im März mit einer Durchschnittstemperatur von 7,3 °C und damit um 0,6 °C wärmer gegenüber der Referenzperiode. Der **April** war der erste Monat im Abflussjahr 2023 mit einer zu kalten Mitteltemperatur. Nur ein Tag wies Temperaturen über 20 °C auf. Im Mittel lag die Temperatur im zweiten Frühlingsmonat bei 7,0 °C und war damit um 1,4 °C kälter als der vieljährige Durchschnitt.

Zusammengefasst fiel das Winterhalbjahr (November bis April) mit 4,7 °C um 0,9 °C wärmer aus als in der Referenzperiode 1991/2020 und belegt im Ruhreinzugsgebiet Rang 7 der wärmsten Winterhalbjahre.

Im **Mai** lagen die Tagestemperaturen häufig über der 20 °C-Marke und es gab auch einige Sommertage mit Temperaturen über 25 °C. Die Nächte hingegen waren oftmals noch sehr kalt. So war der Mai insgesamt mit 12,2 °C nahezu durchschnittlich warm, die Monatsmitteltemperatur lag lediglich um 0,1 °C unter der der Referenzperiode. Der meteorologische Frühling war mit im Mittel 8,1 °C um 0,3 °C kälter als im Zeitraum 1991/2020. Im **Juni** wurde im Ruhrgebiet an allen Tagen Tageshöchsttemperaturen von mehr als 20 °C, an acht Tagen sogar über 30 °C gemessen. Der Juni lag mit 18,1°C um 2,8 °C über der Referenzperiode. Er war der wärmste Monat des Abflussjahrs 2023 und nach Juni 2019 und Juni 2003 der drittwärmste Juni seit 1881.

Nach kühlem Beginn mit anschließender Hitzewelle war im **Juli** die zweite Monatshälfte erneut kühl und wechselhaft. Mit einer Durchschnittstemperatur von 17,2 °C und einer nur geringen Abweichung von -0,1 °C war der Juli annähernd durchschnittlich warm. Auch im **August** setzte sich die kühle Witterung fort, bevor in der zweiten und zu Beginn der dritten Dekade sommerliche Temperaturen vorherrschten. Kühl ging der August dann zu Ende, so dass er insgesamt im Mittel mit 16,7 °C geringfügig um -0,2 °C zu kalt ausfiel. Zusammengefasst war der meteorologische Sommer mit einer mittleren Temperatur von 17,3 °C um 0,8 °C zu warm. Es war der achtwärmste Sommer seit Beginn der Wetteraufzeichnung im Jahr 1881.

Im ersten Monatsdrittel gab es im **September** hochsommerliches Wetter mit Temperaturen verbreitet über 30 °C, bis Monatsende folgten eine Reihe spätsommerlich warmer Tage nach. Die Anzahl der Sommertage (> 25 °C) und heißer Tage (> 30 °C) war überdurchschnittlich hoch. Mit einer mittleren Temperatur von 16,8 °C war der erste Herbstmonat daher um 3,6 °C wärmer als der langjährige Durchschnitt und damit der wärmste September seit 1881.

Auch im **Oktober** setzte sich zunächst die spätsommerlich warme Witterung fort. Zur Monatsmitte gab es jedoch einen deutlichen Temperaturrückgang und in der Folgezeit jahreszeittypische Temperaturen. Er fiel mit einer Monatsmitteltemperatur von 11,9 °C um 2,7 °C wärmer aus als die Vergleichsperiode und war der viertwärmste Oktober im Ruhreinzugsgebiet seit Aufzeichnungsbeginn.

Der Temperaturmittelwert im Sommerhalbjahr (Mai bis Oktober) betrug 15,5 °C und lag damit um 1,5 °C über dem langjährigen Mittel der Vergleichsperiode. Es war zusammen mit den drei Abflussjahren 2022, 2006 und 1946 das zweitwärmste Sommerhalbjahr seit Beginn der Wetteraufzeichnung 1881.

Im Tabellenanhang auf Seite 34 sind ergänzend die meteorologischen Daten ausgewählter Wetterstationen im Einzugsgebiet der Ruhr zusammengestellt.

2 Niederschlag

In Bild 2 sind die über das Einzugsgebiet der Ruhr gemittelten Niederschlagshöhen der einzelnen Monate des Abflussjahres 2023 und die jeweiligen Mittelwerte der Jahresreihe 1927/2022 dargestellt. Tabelle 1 enthält zusätzlich die Niederschlagshöhen der Quartale, Halbjahre, den Vergleich mit den Werten des Vorjahres sowie die prozentuale Abweichung der Niederschlagshöhen 2023 von den langjährigen Mittelwerten. In der letzten Spalte sind die Differenzen zwischen den im Abflussjahr 2023 beobachteten Werten und den langjährigen Mittelwerten des Niederschlages vorzeichengerecht summiert. Dabei ist ein Überschuss, d. h. ein Mehrbetrag gegenüber dem langjährigen Mittelwert der Niederschlagshöhe, durch ein positives und ein Fehlbetrag, d. h. ein Minderbetrag gegenüber dem langjährigen Mittelwert, durch ein negatives Vorzeichen gekennzeichnet.

Im Abflussjahr 2023 betrug die Jahressumme des Gebietsniederschlages im Einzugsgebiet der Ruhr 1.246 mm. Sie lag damit um 199 mm oder 19 % über dem langjährigen Mittelwert der Jahresreihe 1927/2022. Seit 1927 gab es bereits 13 Abflussjahre mit mehr Niederschlag, zuletzt das Abflussjahr 2007 mit 1.362 mm.

In Bild 2 ist zusätzlich die Summenlinie der monatlichen Niederschlagshöhen im Vergleich zum langjährigen Mittel eingezeichnet. Nach anfänglich leicht negativer Bilanz, die im Februar endete, zeigte sie im Anschluss bis zum Ende des Abflussjahres einen durchweg überdurchschnittlichen Verlauf mit einem maximalen Überschuss nach Ablauf des Oktobers. In der ersten Jahreshälfte lagen nur die Niederschlagssummen der ersten beiden Monate unterhalb des jeweiligen Mittelwerts für den Zeitraum 1927/2022, sodass das Winterhalbjahr mit einem überdurchschnittlichen Niederschlagsaufkommen abschloss. Da auch in der zweiten Jahreshälfte nur zwei Monate ein Niederschlagsdefizit aufwiesen, war auch das zweite Halbjahr überdurchschnittlich nass.

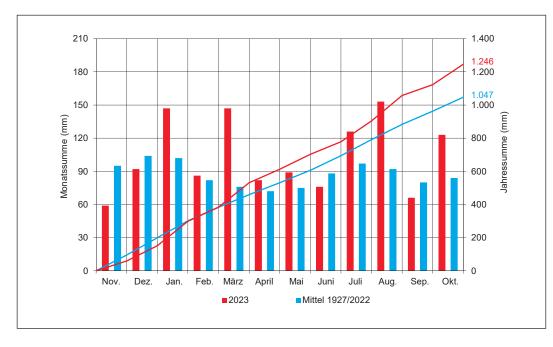


Bild 2: Mittlere monatliche Niederschlagshöhen im Einzugsgebiet der Ruhr im Abflussjahr 2023 und langjährige Mittelwerte für den Zeitraum 1927/2022

Fig. 2: Mean monthly precipitation depths in the Ruhr catchment area during the 2023 water year and average values for the period 1927/2022

Tabelle 1: Niederschlagshöhen der Abflussjahre 2023 und 2022 sowie Mittelwerte der Jahresreihe 1927/2022
 Table 1: Precipitation depths during the 2023 and 2022 water years as well as the average values for the period 1927/2022

1	2	3	4	5	6
Monat	2023	2022	Mittelwert 1927/2022	2023 zu Mittelwert 1927/2022	Summierter Fehlbetrag (-) Überschuss (+) ab 1. Nov. 2022
	mm	mm	mm	%	mm
November Dezember Januar Februar März April	59 92 147 86 147 82	62 74 109 162 18 86	95 104 102 82 76 72	62 88 144 105 193 114	-36 -48 -3 +1 +72 +82
Mai Juni Juli August September Oktober	89 76 126 153 66 123	62 54 52 14 139 50	75 88 97 92 80 84	119 86 130 166 83 146	+96 +84 +113 +174 +160 +199
1. Quartal 2. Quartal 3. Quartal 4. Quartal	298 315 291 342	245 266 168 203	301 230 260 256	99 137 112 134	-3 +85 +31 +86
Winter- halbjahr	613	511	531	115	+82
Sommer- halbjahr	633	371	516	123	+117
Abflussjahr	1.246	882	1.047	119	+199

Wie in Tabelle 1 dargestellt, verteilten sich die jeweiligen Halbjahressummen im Abflussjahr 2023 zu 49 % auf das Winter- und 51 % auf das Sommerhalbjahr. Im Winterhalbjahr 2023 wurde eine Niederschlagshöhe von insgesamt 613 mm registriert, das sind 82 mm oder 15 % mehr als im Vergleich zum langjährigen Mittelwert. Der Niederschlag im Sommerhalbjahr summierte sich auf 633 mm, dies entspricht im Vergleich einem Überschuss von 117 mm bzw. 23 %. Das gesamte Abflussjahr 2023 wies eine um 364 mm höhere Niederschlagssumme auf als das Abflussjahr 2022. Es war damit das erste Abflussjahr mit einem Niederschlagsüberschuss nach einer durchgehenden Folge von 14 Abflussjahren mit einem Niederschlagsdefizit. Die defizitäre Niederschlagsbilanz der vorangegangenen 14 Abflussjahre konnte im Abflussjahr 2023 zwar um knapp 200 mm verringert werden. Das Defizit liegt jedoch noch immer um 15 % über einem durchschnittlichen Jahresniederschlag.

Bei der Einordnung der Niederschlagssummen aus Tabelle 1 in die langjährigen Aufzeichnungen seit 1927 zeigt sich, dass es schon 23-mal niederschlagsreichere Winterhalbjahre und 16-mal niederschlagsreichere Sommerhalbjahre gegeben hat. Im Vergleich zum vorangegangenen Abflussjahr, in dem das Winterhalbjahr nasser und das Sommerhalbjahr trockener ausfielen, sind im Abflussjahr 2023 die beiden Halbjahre ähnlich niederschlagsreich. Quartalsbezogen zählen das zweite und vierte Quartal mit Summen von 298 mm bzw. 342 mm zu den jeweils 15 nassesten zweiten bzw. vierten Quartalen seit 1927.

Die Niederschlagsverhältnisse im Abflussjahr 2023 lassen sich für die einzelnen Monate wie folgt charakterisieren:

Der **November 2022** fiel mit 59 mm zu trocken aus, wobei der größte Anteil des Niederschlags in der zweiten Monatshälfte beobachtet wurde. Kurzzeitig fiel im Bergland auch Schnee, so dass an zwei Tagen auf dem Kahlen Asten eine Schneedecke (> 1 cm) zu verzeichnen war. Der November war ähnlich trocken wie der November 2021. Gegenüber dem langjährigen Mittel fehlten 38 % der mittleren Niederschlagsmenge. Im **Dezember** fiel der Niederschlag hauptsächlich im letzten Monatsdrittel als Regen. Zu Monatsbeginn allerdings schneite es verbreitet. Mit 92 mm war der Dezember entsprechend um 12 mm bzw. 12 % gegenüber dem langjährigen Mittel zu trocken. Auf dem Kahlen Asten wurde an 18 Tagen eine Schneedecke registriert.

Wiederholt brachten Tiefdruckgebiete oder deren Ausläufer im Januar 2023 Niederschläge, die in der ersten Monatshälfte als Regen fielen, in der zweiten Monatshälfte bildete sich in höheren und mittleren Lagen eine Schneedecke, die sich auf dem Kahlen Asten über 17 Tage erstreckte. Insbesondere durch die Niederschläge zur Monatsmitte zeigte sich der Januar mit einer Niederschlagssumme von 147 mm um 45 mm oder 44% zu nass. Tiefdruckgebiete brachten im Februar vor allem am Monatsanfang und zur Monatsmitte viel Niederschlag, so dass insgesamt 86 mm Niederschlag fielen, dies sind 5 % mehr als im langjährigen Mittel. Auf dem Kahlen Asten lag an 21 Tagen eine Schneedecke. Mit 48 cm wurde am 02.02.2023 die größte Schneehöhe im Abflussjahr 2023 registriert.

Den **März** kennzeichneten niederschlagsreiche Westwetterlagen, bei denen Tiefdruckgebiete oder deren Ausläufer in rascher Folge das Einzugsgebiet überquerten. Sie brachten in der ersten Märzhälfte Schnee auch bis in tiefere Lagen. Die Niederschlagssumme betrug 147 mm, womit der März im Vergleich zum langjährigen Mittel um 93 % und damit deutlich zu nass ausfiel. Seit 1927 gab es nur fünf Jahre mit einen niederschlagsreicheren März, zuletzt im Jahr 1998. Auf dem Kahlen Asten wurde an noch 16 Tagen eine Schneedecke registriert. Im **April** herrschten häufig östliche Strömungen vor, die für typisches Aprilwetter mit entsprechend schauerartigen und gewittrigen Niederschlägen sorgten. Am Monatsende lag die Niederschlagssumme bei 82 mm und damit um 14 % oberhalb des langjährigen Mittelwertes. Eine Schneedecke bildete sich auf dem Kahlen Asten nicht mehr aus.

Wie im Vorjahr führten Gewitter und lokale Starkregenereignisse, die vor allem in der ersten Hälfte und zu Beginn der dritten Dekade auftraten, im **Mai** zu einer Niederschlagssumme von 89 mm im Gebietsmittel. Damit war er um 14 mm bzw. 19 % gegenüber dem langjährigen Mittel zu nass. Im **Juni** war die erste Monatshälfte abgesehen von nur einzelnen konvektiven Niederschlagsereignissen weitgehend trocken. Vom 17. bis 23.06. zogen mehrere Tiefdruckgebiete bzw. deren Ausläufer durch. Insbesondere bei Tief "Lambert" zum Schluss traten schwere Gewitter und Starkregenereignisse auf, die zum Teil unwetterartige Ausmaße annahmen. Für das Ruhreinzugsgebiet wurde am 22.06.2023 als Gebietsmittel 50,9 mm errechnet. An der Station Essen-Ruhrhaus wurde am selben Tag 69 mm gemessen, an der Station Möhnetalsperre waren es 76 mm Niederschlag, dies ist dort fast die durchschnittliche Niederschlagsmenge in einem Juni. An der Station

Hennetalsperre fielen vom 20.06. 20 Uhr bis 23.06.2023 08 Uhr in nur 60 Stunden 118 mm Niederschlag, dies sind 133 % der langjährigen Monatssumme für den Monat Juli. In Summe als Gebietsmittel war der Juni im Ruhreinzugsgebiet jedoch zu trocken. Mit 76 mm fehlten im Vergleich zum langjährigen Mittel 12 mm bzw. 14 %.

Im **Juli** wurden in den ersten beiden Dekaden nur ein Viertel, in der letzten Dekade hingegen drei Viertel der gesamten monatlichen Niederschlagssumme registriert. Mit 126 mm fielen 29 mm bzw. 30 % mehr Niederschlag als im langjährigen Monatsmittel. Die niederschlagsreiche Witterung setzte sich im **August** fort. Die erste Woche war geprägt durch wechselhaftes Wetter mit Starkund Dauerregen, auch in der letzten Woche brachten Tiefausläufer Niederschläge mit sich. Mit einem Gebietsniederschlag von 153 mm war der August der niederschlagsreichste Monat des Abflussjahres 2023, es gab 61 mm bzw. 66 % mehr Niederschlag als im langjährigen Mittel. In Summe fielen im Juli und August insgesamt 279 mm. Es gab seit 1927 erst acht Mal höhere Niederschlagsmengen in den beiden Monaten, zuletzt im Jahr 2007.

Auf diese beiden niederschlagsreichen Monate folgte ein zu trockener **September**. Hochdruckgebiete bestimmten den Witterungsverlauf, unterbrochen durch Tiefausläufer mit Unwettercharakter um den 11. sowie um den 21. des Monats. Mit einer Monatssumme von 66 mm fielen 17 % weniger als im langjährigen Mittel. Auch zu Monatsbeginn setzte sich im **Oktober** die überwiegend trockene Witterung fort. Ab dem 18.10. sorgten Tiefdruckgebiete und ihre Ausläufer für regnerisches Wetter bis zum Monatsende. Im Gebietsmittel wies der Oktober eine Nieder-

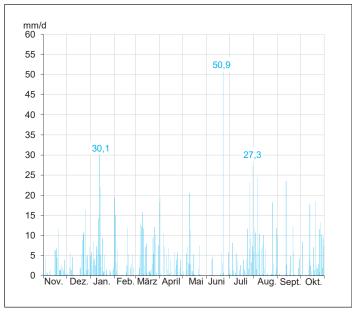


Bild 3: Mittlere tägliche Gebietsniederschlagshöhen im Einzugsgebiet der Ruhr im Abflussiahr 2023

Fig. 3: Mean daily aerial precipitation depths in the Ruhr catchment area during the 2023 water year

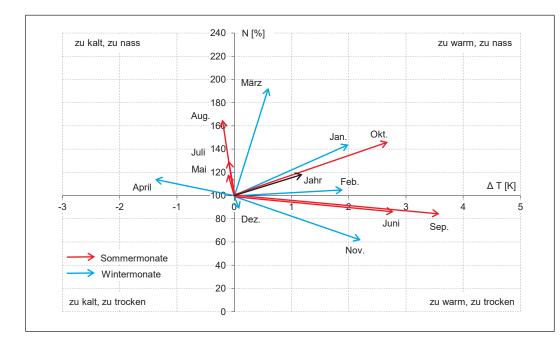


Bild 4: Thermopluviogramm des Ruhreinzugsgebietes für das Abflussjahr 2023

Fig 4.: Thermopluviogram of the ruhr catchment area recorded for the 2023 water year

schlagssumme von 123 mm auf und war damit um 39 mm bzw. 46 % im Vergleich zum langjährigen Mittel zu nass.

Zur Verdeutlichung der im Abflussjahr 2023 aufgetretenen Niederschlagsintensitäten sind in Bild 3 die täglichen Niederschlagshöhen dargestellt. Dem jeweiligen Tageswert liegen die Daten von 30 über das Einzugsgebiet der Ruhr verteilten Niederschlagsmessstationen zugrunde. Der höchste tägliche Gebietsniederschlag im Abflussjahr 2023 wurde demnach für den 22. Juni mit 50,9 mm/d berechnet.

Die Ergebnisse aus Kapitel 1 (Lufttemperatur) und Kapitel 2 (Niederschlag) lassen sich mit Hilfe eines Thermopluviogramms in einer Abbildung übersichtlich zusammenfassen. Bild 4 zeigt das Thermopluviogramm im Gebietsmittel des Ruhreinzugsgebiets. Darin sind die Abweichungen der Temperatur und der Niederschlagshöhe vom jeweiligen langjährigen Mittelwert für jeden Monat und für das gesamte Abflussjahr in Form von Pfeilen dargestellt. Die Pfeile zeigen entsprechend dem Zusammenwirken von Temperatur und Niederschlag in einen der vier Quadranten, die über die Kombination von "zu warm/zu nass", "zu kalt/zu nass", "zu kalt/zu trocken" und "zu warm/zu trocken" eine zusammenfassende Charakterisierung der Witterung in einem Zeitraum (Monat, Jahr) ergeben. Der Koordinatenursprung stellt mit 100 % Niederschlag und 0 K Temperaturabweichung die mittleren Verhältnisse dar. Die Länge der Pfeile repräsentiert die Größe der Abweichung der Messwerte vom langjährigen Mittelwert. Zusätzlich erfolgt durch verschieden gewählte Farben (rot = Sommer, blau = Winter) eine jahreszeitliche Zuordnung.

Hinsichtlich der Aufteilung relativ zur Ordinate veranschaulicht das Thermopluviogramm in Bild 4, dass vier Monate im Abflussjahr 2023 gegenüber der Vergleichsperiode 1991/2020 zu kalt waren, davon drei nur geringfügig. In Relation zur Abszisse war die Mehrheit der Monate im Gegensatz zu den Vorjahren zudem zu nass, nur vier Monate waren zu trocken. Im Gegensatz zum vorangegangenen Abflussjahr fielen die Abweichungen der zu trockenen Monate jedoch deutlich geringer aus.

Die Längen der Pfeile in den jeweiligen Quadranten zeigen ein überwiegend einheitliches Bild. Auffällig und mit größeren Abweichungen von den jeweiligen Mittelwerten sind der Monat März, welcher überdurchschnittlich nass und leicht zu warm war, sowie der Monat September, welcher besonders warm und leicht zu trocken war. Die geringste Abweichung vom Koordinatenursprung bzw. den mittleren Verhältnissen hatte im Abflussjahr 2023 der Monat Dezember.

Zusammengefasst bildet sich die Verteilung der Einzelmonate durch den in schwarz dargestellten Pfeil für das Abflussjahr 2023 ab: es war zu warm und zu nass.

3 Abfluss

Nach dem Ruhrverbandsgesetz von 1990 (RuhrVG) sind festgeschriebene Mindestabflüsse an ausgewählten Kontrollquerschnitten in der Ruhr einzuhalten. Danach ist der Abfluss so zu regeln, dass das täglich fortschreitende arithmetische Mittel des Abflusses aus fünf aufeinanderfolgenden Tageswerten an jedem Querschnitt der Ruhr unterhalb des Pegels Hattingen einen Wert von 15,0 m³/s und am Pegel Villigst einen Wert von 8,4 m³/s nicht unterschreitet. Zusätzlich ist ein niedrigster Tagesmittelwert des Abflusses unterhalb des Pegels Hattingen von 13,0 m³/s und am Pegel Villigst von

7,5 m³/s festgelegt worden, der nicht unterschritten werden darf. Mit dem Ausrichten auf übergreifende Mittelwerte soll erreicht werden, dass kurzfristige Unterschreitungen von Grenzwerten, die in der Praxis wegen der in der Ruhr und ihren Nebenflüssen vorhandenen Stauhaltungen, Wasserentnahmen und -einleitungen unvermeidbar sind, die Systemsteuerung nicht maßgebend bestimmen.

Gemäß § 2 Abs. 2 Satz 3 RuhrVG kann die Aufsichtsbehörde im Einzelfall Ausnahmen zulassen, die eine Abweichung von den im RuhrVG festgeschriebenen Grenzwerten erlauben. Aufgrund einer neuerlichen hydrometeorologischen Ausnahmesituation, wie sie bereits im Witterungsverlauf des Abflussjahres 2018 begann, war es nach den Abflussjahren 2019 bis 2022 auch zu Beginn des Abflussjahres 2023 notwendig, von der im RuhrVG eröffneten Möglichkeit reduzierter Grenzwerte Gebrauch zu machen. Insgesamt gestalteten sich die Abweichungen von den im RuhrVG festgeschriebenen Grenzwerten im fünf Tage übergreifenden Mittel (GW5TM) und im Tagesmittel (GWTM) wie folgt:

- a) Pegel Hattingen bis Ruhrmündung:
- 01.11.2022 bis 30.11.2022: 13,0 m³/s im GW5TM und 11,0 m³/s im GWTM
- b) Pegel Villigst
- 01.11.2022 bis 31.12.2022: 6,5 m³/s im GW5TM und 5,5 m³/s im GWTM

Der Nachweis, ob und wie für die einzelnen Tage des Abflussjahres die Verpflichtungen gemäß Ruhrverbandsgesetz erfüllt worden sind, kann an dem an den Pegeln Villigst, Hattingen und Mülheim gemessenen oder "sichtbaren" Abfluss und den daraus abgeleiteten 5-Tage-übergreifenden Mittelwerten geführt werden. Zu diesem Zweck enthält der Bericht Tabellen des gemessenen Abflusses und der 5-Tage-übergreifenden Mittelwerte an diesen Kontrollquerschnitten für jeden Tag des Abflussjahres (Anhang S. 51 bis 54). In Bild 6 in Kapitel 3.3 sind diese Angaben grafisch dargestellt.

Für die tägliche Steuerung der Talsperren und die hydrologische Einordnung des jeweiligen Abflussjahres werden darüber hinaus die unbeeinflussten Abflüsse an den Kontrollquerschnitten benötigt. Sie charakterisieren das natürliche Abflussverhalten, welches sich ohne Einfluss des Menschen, d. h. ohne Entnahmen und ohne Zuschusswasser aus den Talsperren, im Einzugsgebiet einstellen würde.

3.1 Unbeeinflusster oder natürlicher Abfluss

Für die Steuerung der Talsperren im Laufe des Abflussjahres wird der unbeeinflusste Abfluss täglich mit Hilfe der an den Kontrollquerschnitten gemessenen Abflusswerte zunächst überschlägig ermittelt. Für den vorliegenden Ruhrwassermengenbericht wurden die unbeeinflussten Abflüsse nachträglich mit Hilfe von Auswertungen der Pegelaufzeichnungen, detaillierten Angaben über Entnahmen und Entziehung aller Entnehmer im Einzugsgebiet der Ruhr sowie über Abgaben aus den Talsperren auf Tagesbasis errechnet.

Tabelle 2: Unbeeinflusster Abfluss und Abflussspenden an der Ruhrmündung im Abflussjahr 2023

Table 2: Unaffected runoff and rate of runoff per km² at the Ruhr River mouth during the 2023 water year

1	2	3	4	5
Monat	2023	2022	1927/2022	2023 zu 1927/2022
	m³/s	m³/s	m³/s	%
November Dezember Januar Februar März April	32,8 67,6 202,0 154,0 164,0 131,0	32,1 94,8 157,0 290,0 59,5 97,4	88,4 126,8 143,7 130,9 115,3 88,7	37 53 141 118 142 148
Mai Juni Juli August September Oktober	87,4 34,3 25,8 110,0 46,9 53,4	33,4 19,8 11,2 9,0 24,5 27,5	50,7 41,9 44,6 39,1 39,7 53,3	172 82 58 281 118 100
mittlerer Abfluss Winterhalbjahr	125,2	119,7	115,7	108
mittlerer Abfluss Sommerhalbjahr	59,8	20,9	44,9	133
mittlerer Abfluss Abflussjahr	92,2	69,9	80,1	115
Spende l/(s•km²) Winterhalbjahr	27,9 68%	26,7 85%	25,8 72%	108
Spende l/(s•km²) Sommerhalbjahr	13,3 32%	4,7 15%	10,0 28%	133
Spende l/(s•km²) Abflussjahr	20,5	15,6	17,8	115

In Tabelle 2 sind die auf diese Art bestimmten monatlichen Mittelwerte des unbeeinflussten Abflusses im Vergleich zu den langjährigen Mittelwerten für das gesamte Abflussjahr 2023 zusammengestellt.

Die Werte gelten für die Ruhrmündung und werden auf Basis der Tagesmittelwerte des gemessenen Abflusses am Pegel Mülheim errechnet. Die unbeeinflussten Abflüsse aus dem Vorjahr sind zum Vergleich aufgeführt. In Spalte 4 sind die monatlichen Mittelwerte der Jahresreihe 1927/2022 und in der letzten Spalte die unbeeinflussten Abflüsse des Abflussjahres 2023 in Prozent der langjährigen Mittelwerte angegeben.

Der mittlere jährliche unbeeinflusste Abfluss lag im Abflussjahr 2023 bei 92,2 m³/s und damit um 15 % über dem langjährigen Mittelwert. In der Liste der unbeeinflussten Abflüsse seit 1927

gehört das Abflussjahr 2023 damit etwa zum Drittel der abflussreicheren Abflussjahre. Zuletzt gab es im Abflussjahr 2008 mit 94,6 m³/s einen größeren unbeeinflussten Abfluss. Im Vergleich zu den vorangegangenen Abflussjahren seit 2018 liegt der unbeeinflusste Abfluss des Abflussjahres 2023 um jeweils etwa 30 %, im Vergleich zum Abflussjahr 2019 sogar um 45 % über den jeweiligen unbeeinflussten Abflüssen der betrachteten Abflussjahre. Damit hat sich die 2018 begonnene hydrometeorologische Ausnahmesituation nicht weiter fortgesetzt und beginnt sich zu entspannen.

Im Winterhalbjahr war der unbeeinflusste Abfluss leicht größer und im Sommerhalbjahr deutlich größer als das langjährige Mittel. Im Winterhalbjahr lag der unbeeinflusste Abfluss mit 125,2 m³/s um 8 % und im Sommerhalbjahr mit 59,8 m³/s um 33 % über dem jeweiligen langjährigen Mittelwert. Das Sommerhalbjahr nimmt damit Position 23 der abflussreichsten Sommerhalbjahre für den Zeitraum seit 1927 ein. Zuletzt war das Abflussjahr 2007 abflussreicher. Die prozentuale Aufteilung der unbeeinflussten Abflüsse im Abflussjahr 2023 auf die beiden Halbjahre zeigt gegenüber der langjährigen Verteilung eine leichte Verschiebung zum Sommerhalbjahr hin. Auf das Winterhalbjahr entfielen 68 % und auf das Sommerhalbjahr 32% gegenüber ansonsten 72 % zu 28 %.

Betrachtet man die einzelnen Monatswerte des unbeeinflussten Abflusses in Bild 5, hebt sich im Vergleich zum langjährigen Mit-

m³/s
220
200
180
160
140
120
100
80
60
40
20
Nov. Dez. Jan. Feb. März April Mai Juni Juli Aug. Sept. Okt.

2023

Mittel 1927/2022

Bild 5: Mittlerer monatlicher unbeeinflusster Abfluss an der Ruhrmündung im Abflussjahr 2023 im Vergleich zu den langjährigen Mittelwerten 1927/2022

Fig. 5: Mean monthly unaffected runoff at the mouth of the Ruhr River during the 2023 water year compared with the average values for the period 1927/2022

telwert neben den sehr abflussreichen Monaten Januar und insbesondere August der Monat November als besonders abflussarmer Monat hervor.

Im Winterhalbjahr 2023 wiesen vier Monate überdurchschnittlich hohe unbeeinflusste Abflüsse auf. Im Sommerhalbjahr hatten im Gegensatz zu den Abflussjahren 2018 bis 2020 und 2022, in denen für alle Monate ein unterdurchschnittlicher unbeeinflusster Abfluss berechnet wurde, drei Monate überdurchschnittlich hohe unbeeinflusste Abflüsse. Für den Januar wurde mit 202 m³/s der höchste unbeeinflusste monatliche Abfluss des Abflussjahres 2023 berechnet, die Abweichung zum langjährigen Mittelwert beträgt 141 %. Im August war die Abweichung zum langjährigen Mittel mit 281 % annähernd doppelt so hoch wie im Januar. Der unbeeinflusste Abfluss lag im August jedoch niedriger als im Februar bei 110 m³/s. Seit 1927 gab es nur im August 2007 mit 223 m³/s einen noch höheren unbeeinflussten Abfluss im August. Insgesamt wurde für das Sommerhalbjahr 2023 mit 59,8 m³/s ein knapp dreimal so großer unbeeinflusster Abfluss ermittelt wie für das Sommerhalbjahr im Abflussjahr 2022.

Der niedrigste Wert des Abflussjahres 2023 wurde für den Juli mit 25,8 m³/s ermittelt. Mit 32,8 m³/s war der unbeeinflusste Abfluss im November 2022 zwar größer, er lag aber um 63 % unter dem langjährigen Mittel im Gegensatz zu 42 % im Juli. Die unterdurchschnittlichen Monatswerte des unbeeinflussten Abflusses des Abflussjahres 2023 nehmen keine besonderen Positionen in den jeweiligen Ranglisten ein.

3.2 Gemessener oder tatsächlicher Abfluss

Wie bereits erwähnt, werden an den Kontrollquerschnitten Pegel Villigst und Pegel Hattingen Abflüsse zur Überprüfung der Einhaltung gesetzlicher Verpflichtungen gemessen. Diese können aber auch dazu verwendet werden, die Wirkung der Talsperren durch einen Vergleich von unbeeinflussten (natürlichen) und gemessenen (beeinflussten) Abflusswerten zu dokumentieren.

In Tabelle 3 sind die Monatsmittelwerte des gemessenen Abflusses an den Pegeln Villigst und Hattingen im Vergleich zu den langjährigen Mittelwerten aufgelistet. Aus hydrologischen Gründen wird für den Pegel Hattingen nur die Zeitreihe ab 1968, d. h. ab dem Abflussjahr mit voller Verfügbarkeit der Biggetalsperre und damit gleich großem Talsperrensystem, verwendet.

Tabelle 3 belegt, dass die mittleren Jahresabflüsse im Abflussjahr 2023 an beiden Pegeln ein überdurchschnittliches Niveau erreichten. Damit endet eine Reihe von elf Abflussjahren in Folge mit unterdurchschnittlichen mittleren Jahresabflüssen, die mit dem Abflussjahr 2012 begonnen hatte. Im Winterhalbjahr entsprach der mittlere Abfluss am Pegel Villigst dem langjährigen Mittelwert, am Pegel Hattingen lag er leicht darüber. Im Sommerhalbjahr hingegen waren an beiden Pegeln die mittleren Abflüsse deutlich größer als die jeweiligen langjährigen Mittelwerte. Für

Tabelle 3: Gemessene Abflüsse und Abflussspenden der Ruhr am Pegel

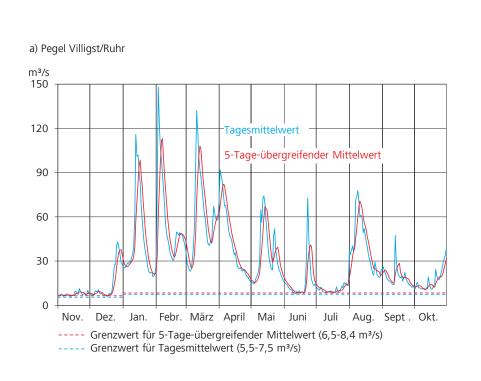
Villigst und am Pegel Hattingen im Abflussjahr 2023
3: Runoff and rate of runoff per km² measured at the gauging stations at Villigst and Hattingen during the 2023 water year Table

1	2	3	4	5	6	7
	Pege	el Villigst/Ru	hr *)	Pege	l Hattingen	/Ruhr
Monat	2023	1951/ 2022	2023 zu 1951/ 2022	2023	1968/ 2022	2023 zu 1968/ 2022
	m³/s	m³/s	%	m³/s	m³/s	%
November Dezember Januar Februar März April	7,7 15,1 43,2 58,3 58,4 42,8	25,8 38,6 46,5 42,3 40,2 30,5	30 39 93 138 145 140	24,4 49,0 166,0 124,0 140,0 112,0	68,9 103,0 125,0 108,0 99,9 69,1	35 48 133 115 140 162
Mai Juni Juli August September Oktober	34,1 16,3 10,8 40,3 19,2 17,2	19,0 17,8 19,4 17,2 16,8 19,1	179 92 56 234 114 90	76,5 32,4 25,9 94,1 46,4 47,7	43,4 38,5 41,2 37,8 39,1 47,3	176 84 63 249 119
mittlerer Abfluss Winterhalbjahr	37,4	37,4	100	103,0	95,7	108
mittlerer Abfluss Sommerhalbjahr	23,0	18,2	126	54,0	41,2	131
mittlerer Abfluss Abflussjahr	30,2	27,7	109	78,1	68,3	114
Spende l/(s•km²) Winterhalbjahr	18,6 62%	18,6 67%	100	25,0 66%	23,2 70%	108
Spende l/(s•km²) Sommerhalbjahr	11,4 38%	9,0 33%	126	13,1 34%	10,0 30%	131
Spende l/(s•km²) Abflussjahr	15,0	13,8	109	19,0	16,6	114

das Winterhalbjahr wurde für den Pegel Hattingen ein mittlerer Abfluss von 103 m³/s berechnet. Seit 1968 gab es schon 20-mal größere Werte in einem Winterhalbjahr.

Im Sommerhalbjahr war der mittlere Abfluss am Pegel Villigst fast zwei ein halb mal so groß wie im vorangegangenen Abflussjahr 2022. Am Pegel Hattingen lag er um 31% über dem langjährigen Mittel. In Hattingen wurde seit 1968 erst neun Mal ein größerer mittlerer Abfluss für ein Sommerhalbjahr ermittelt, zuletzt im Abflussjahr 2007 mit 89,1 m³/s.

Im Gegensatz zu den vorangegangenen sieben Abflussjahren seit 2016, in denen an beiden Pegeln insgesamt nur höchstens drei Monate mit überdurchschnittlich hohen Abflüssen registriert wurden, gab es im Abflussjahr 2023 am Pegel Villigst sechs und am Pegel Hattingen sieben Monate mit überdurchschnittlich hohen Abflüssen.


Am Pegel Villigst war im Abflussjahr 2023 der März mit 58,4 m³/s, dies entspricht 145 % des langjährigen Mittelwertes, der abflussreichste Monat. Am Pegel Hattingen war es der Januar mit einem Monatsmittel von 166 m³/s, dies entspricht 133 % des langjährigen Mittelwertes. Eine deutlich größere Abweichung wies mit 234 % in Villigst und mit 249 % in Hattingen der August auf. Am Pegel Hattingen wurden in einem August seit 1968 nur im Abflussjahr 2007 mit 213 m³/s ein höherer mittlerer Abfluss als die 94,1 m³/s im Abflussjahr 2023 ermittelt.

Der abflussärmste Monat war an beiden Pegeln der November. Am Pegel Villigst betrug der mittlere Abfluss 7,65 m³/s, dies entspricht 30 % des langjährigen Mittelwertes, am Pegel Hattingen lag er bei 24,4 m³/s, dies sind 35 % des langjährigen Mittelwertes. Am Pegel Hattingen gab es erst fünf Mal einen abflussärmeren November seit 1968, zuletzt im Abflussjahr 2021 mit 21,0 m³/s.

Der geringe Monatsmittelwert am Pegel Villigst im Monat November ist in der Umsetzung der genehmigten Grenzwertreduzierungen am Pegel Villigst begründet. Im fünf Tage übergreifenden Mittel (GW5TM) galt am Pegel Villigst vom 01.11. bis 31.12.2022 anstelle des Grenzwertes von 8,4 m³/s ein GW5TM von 6,5 m³/s. Beim Pegel Hattingen muss beim Vergleich der Monatsmittelwerte mit dem jeweils gültigen Grenzwert zusätzlich beachtet werden, dass der Grenzwert bis zur Ruhrmündung gilt und auf der Gewässerstrecke unterhalb des Pegels Hattingen bis zur Ruhrmündung Wasserentnahmen und -entziehungen stattfinden, die bei der Talsperrensteuerung berücksichtigt werden müssen. Am Pegel Hattingen galt im November 2022 anstelle des Grenzwertes von 15 m³/s ein GW5TM von 13 m³/s.

Der Abfluss verteilt sich in Hattingen im Durchschnitt zu 70 % auf das Winter- und zu 30 % auf das Sommerhalbjahr, in Villigst ist das Verhältnis 67 % zu 33 %. Im Abflussjahr 2023 gab es eine leichte Verschiebung zum Sommerhalbjahr hin, sodass sich der Abfluss in Villigst zu 62 % auf das Winterhalbjahr und zu 38 % auf das Sommerhalbjahr und in Hattingen im Verhältnis 66 %/34 % aufteilte. Die Verschiebung des Abflusses vom Winter- in das Sommerhalbjahr liegt im trockeneren Winter- und nasseren Sommerhalbjahr begründet.

An beiden Kontrollquerschnitten Villigst und Hattingen zeigten sich Abschnitte mit erhöhter Wasserführung im Winterhalbjahr in den Monaten Januar bis April, aber auch im Sommerhalbjahr gab es wiederholt Abschnitte mit erhöhter Wasserführung (siehe Bild 6). Im Gegensatz zu den vorangegangenen Abflussjahren gab es keine langanhaltenden Abschnitte mit durchgängig niedrigen Abflüssen. Lediglich die Abschnitte Anfang November bis Mitte Dezember sowie der Juli zeigten sich abflussarm.

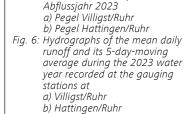
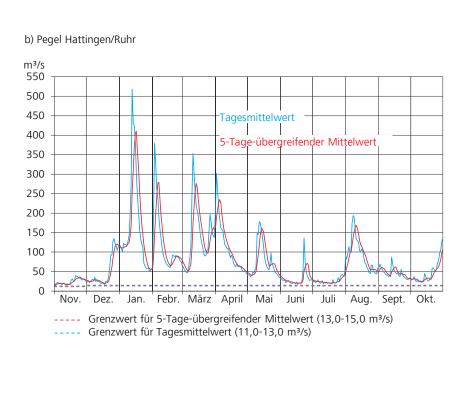



Bild 6: Ganglinien der Tagesmittelwerte und der 5-Tage-übergreifenden Mittelwerte des Abflusses im

3.3 Einhaltung der Grenzwerte

Das RuhrVG schreibt die Einhaltung von Mindestabflüssen vor, räumt aber zugleich ein, dass die Einhaltung der Abflussregelung auch als erfüllt gilt, wenn die festgesetzten Werte aus Gründen nicht eingehalten werden konnten, die der Verband nicht zu vertreten hat, und der Verband die obere Wasserbehörde sowie die Aufsichtsbehörde darüber unverzüglich unterrichtet.

Bei der Prüfung zur Einhaltung der Grenzwerte muss zwischen operationellen und endgeprüften Abflusswerten unterschieden werden. Die operationellen Abflusswerte sind vorläufige Messwerte, die der Talsperrensteuerung unmittelbar im Betrieb zur Verfügung stehen. Entsprechend werden die Abgaben der Talsperren zur Stützung der Mindestwasserführung im täglichen operationellen Betrieb auf die vorläufigen Messwerte ausgerichtet. In bestimmten Zeitintervallen werden die operationellen Messwerte vom jeweiligen Pegelbetreiber durch Kontrollmessungen im Fließquerschnitt überprüft und gegebenenfalls korrigiert. Dadurch können sich im Nachhinein die Abflussmesswerte verändern. In diesem Fall wird im Folgenden von endgeprüften Abflusswerten gesprochen.

Am Pegel Villigst wurden die nach RuhrVG geltenden Grenzwerte im Abflussjahr 2023 nach operationellen und endgeprüften Abflusswerten mit einer Ausnahme zu keinem Zeitpunkt unterschritten. Das niedrigste Tagesmittel wurde im Zeitraum mit Grenzwertreduzierung am 13. November 2022 mit 5,90 m³/s gemessen. Das kleinste 5-Tage-übergreifende Tagesmittel wurde für den 1. November 2022 zu 6,36 m³/s berechnet, es lag damit um 0,14 m³/s unter dem vorgeschriebenen Grenzwert von 6,5 m³/s. Der unverzüglichen Meldung an die obere Wasserbehörde sowie

m³/s
120
100
80
60
40
20
Nov. Dez. Jan. Feb. März April Mai Juni Juli Aug. Sept. Okt.
—Grenzwert lt. Plangenehmigungsbescheid vom 1.12.1998 (2,5 m³/s)
—Tagesmittelwert

Bild 7: Ganglinien der gemessenen und berechneten Tagesmittelwerte des Abflusses am Pegel Oeventrop/Ruhr im Abflussjahr 2023

Fig. 7: Hydrograph of the measured and calculated mean daily runoff recorded at the gauging station Oeventrop/Ruhr during the 2023 water year

die Aufsichtsbehörde wurde durch den Ruhrverband nachgekommen. Im Zeitraum ohne Grenzwertreduzierung lag das niedrigste Tagesmittel am 12. Juni 2023 bei 7,82 m³/s und das kleinste 5-Tage-übergreifende Tagesmittel am 14. Juni 2023 bei 8,54 m³/s.

Die nach RuhrVG geltenden Grenzwerte wurden im Abflussjahr 2023 am Pegel Hattingen nach operationellen und endgeprüften Abflusswerten zu keinem Zeitpunkt unterschritten (Bild 6). Das niedrigste Tagesmittel wurde im Zeitraum mit Grenzwertreduzierung am 2. November 2022 mit 14,2 m³/s gemessen und das kleinste 5-Tage-übergreifende Tagesmittel am 15. November 2022 zu 16,8 m³/s berechnet. Im Zeitraum ohne Grenzwertreduzierung lag das niedrigste Tagesmittel am 18. Dezember 2022 bei 17,0 m³/s und das kleinste 5-Tage-übergreifende Tagesmittel am 18. Dezember 2022 bei 19,6 m³/s.

Auch am Pegel Mülheim wurden im Abflussjahr 2023 die nach RuhrVG geltenden Grenzwerte nach operationellen und endgeprüften Abflusswerten zu keinem Zeitpunkt unterschritten. Das niedrigste Tagesmittel wurde im Zeitraum mit Grenzwertreduzierung am 3. November 2022 mit 13,9 m³/s gemessen und das kleinste 5-Tage-übergreifende Tagesmittel am 15. November 2022 zu 16,5 m³/s berechnet. Im Zeitraum ohne Grenzwertreduzierung lag das niedrigste Tagesmittel am 18. Dezember 2022 bei 16,1 m³/s und das kleinste 5-Tage-übergreifende Tagesmittel am 19. Dezember 2022 bei 19,3 m³/s.

Nach der am 1. Dezember 1998 in Kraft getretenen Änderung des Plangenehmigungsbescheids für die Hennetalsperre darf der Abfluss am Pegel Oeventrop/Ruhr unabhängig von der Jahreszeit 2,5 m³/s nicht unterschreiten. Wie im vorangegangenen Abflussjahr 2022 war es nicht erforderlich, bei der Bezirksregierung Arnsberg einen Antrag auf Reduzierung des Grenzwertes für den Abfluss am Pegel Oeventrop zu stellen.

Die Ultraschalllaufzeitanlage am Pegel Oeventrop, die für die operationelle Steuerung der Hennetalsperre von besonderer Bedeutung ist, wies seit den Abendstunden des 21.04.2023 einen großen Versatz bei den Messwerten auf. Für die Beurteilung der Einhaltung des vorgeschriebenen Grenzwertes wurden ab diesem Zeitpunkt die über die Pegel Meschede/Ruhr und Wenholthausen/ Wenne berechneten Abflusswerte für den Pegel Oeventrop verwendet, für den Zeitraum davor die operationell ermittelten Tagesmittelwerte der Ultraschallanlage. Die auf diese Weise ermittelten Abflusstagesmittelwerte des Pegels Oeventrop/Ruhr sind zusammen mit dem gültigen Grenzwert von 2,5 m³/s für das Abflussjahr 2023 in Bild 7 dargestellt. Danach wurde der geltende Grenzwert im Abflussjahr 2023 am Pegel Oeventrop/ Ruhr nachweislich an allen Tagen nicht unterschritten. Der kleinste Tageswert im Abflussjahr 2023 wurde am 14. November 2022 mit 2,60 m³/s registriert.

3.4 Vergleich zwischen unbeeinflusstem und gemessenem Abfluss

Ein Vergleich der gemessenen Abflüsse mit den entsprechenden Werten des unbeeinflussten Abflüsses gibt einen ersten Hinweis auf die ausgleichende Wirkung des Talsperrensystems. So verdeutlichen die in der Tabelle 4 in den Spalten 2 und 3 für die Pegel Villigst, Hattingen und Mülheim angegebenen, gemessenen und unbeeinflussten NQ-Werte (niedrigster Tagesmittelwert des Berichtzeitraums) den aus den Talsperren geleisteten Zuschuss.

Tabelle 4: Geringste, mittlere und größte Abflusstagesmittelwerte im Abflussjahr 2023

Table 4: Minimum, mean and maximum daily runoff during the 2023 water year

a) Pegel Villigst

1	2	3	4	5	6
Abflussjahr 2023	NQ	NQ	MQ	Größter Tag	esmittelwert
	Winter	Sommer	Jahr	Winter	Sommer
gemess. Abfluss m³/s	5,90	7,82	30,2	148	77,8
Datum	14.11.2022	12.06.2023		03.02.2023	09.08.2023
unbeeinfl. Abfluss m³/s	5,12	5,19	34,7	204	94,9
Datum	14.11.2022	19.06.2023		03.02.2023	08.08.2023
unbeeinflusste Abflussspende l/(s•km²)	2,55	2,58	17,3	101,5	47,2

b) Pegel Hattingen

1	2	3	4	5	6
Abflussjahr 2023	NQ Winter	NQ Sommer	MQ Jahr	Größter Tag Winter	esmittelwert Sommer
gemess. Abfluss m³/s Datum	14,2 02.11.2022	17,2 17.06.2023	78,1	518	194 08.08.2023
unbeeinfl. Abfluss m³/s Datum	13,5 14.11.2022	10,6 22.07.2023	84,6	582 15.01.2023	220 09.08.2023
unbeeinflusste Abflussspende l/(s•km²)	3,28	2,57	20,5	141,3	53,4

c) Pegel Mülheim

1	2	3	4	5	6	
Abflussjahr 2023	hr 2023 NQ		MQ	Größter Tagesmittelwert		
	Winter	Sommer	Jahr	Winter	Sommer	
gemess. Abfluss m³/s Datum	13,9 03.11.2022	17,4 19.06.2023	83,0	509 13.01.2022	201 08.08.2023	
unbeeinfl. Abfluss m³/s Datum	14,5 14.11.2022	11,2 22.07.2023	90,9	621 15.01.2023	227 09.08.2023	
unbeeinflusste Abflussspende l/(s•km²)	3,28	2,53	20,6	140,5	51,4	

Am Pegel Villigst wurde z. B. der unbeeinflusste Abfluss im Sommerhalbjahr von 5,19 m³/s auf 7,82 m³/s erhöht und in Hattingen von 10,6 m³/s auf 17,2 m³/s. Bei den größten Tagesmittelwerten (Spalten 5 und 6) belegt der Vergleich zwischen gemessenem und unbeeinflusstem Abfluss die Minderung von Scheitelabflüssen durch das Talsperrensystem während Hochwasserereignissen. So lag im Winterhalbjahr der größte gemessene Tagesmittelwert des Abflusses am Pegel Villigst bei 148 m³/s, während der unbeeinflusste Abfluss mit 204 m³/s einen um 38 % größeren Wert aufwies.

Anzumerken ist, dass die Vergleiche in Tabelle 4 nur bedingt aussagekräftig sind, da die Zeitpunkte des Auftretens der höchsten oder niedrigsten Tagesmittelwerte des gemessenen und des unbeeinflussten Abflusses nicht immer und wenn, dann zufällig, übereinstimmen.

3.5 Hochwasserereignisse

Zwischen Mitte Januar und Anfang April 2023 gab es vier Zeitabschnitte mit jahreszeittypisch erhöhten Abflüssen in der Ruhr, bei denen die seinerzeit geltende Hochwassermeldegrenze von 300 m³/s am Pegel Wetter überschritten worden ist. Der höchste Abfluss im Abflussjahr 2023 wurde dabei am Pegel Hattingen/Ruhr am 13. Januar 2023 um 14:05 Uhr mit 550 m³/s bei einem Wasserstand von 575 cm registriert. Bei den anderen drei Ereignissen lag der Scheitelabfluss in Hattingen am 03.02.2023 bei 400 m³/s (Wasserstand 512 cm), am 10.03.2023 bei 370 m³/s (Wasserstand 496 cm) sowie am 02.04.2023 bei 319 m³/s (Wasserstand 466 cm).

Niederschlags- (N), Abfluss- (A) und Unterschiedshöhen (U)

In den Spalten 2 bis 4 der Tabelle 5 sind Niederschlags- (N), Abfluss- (A) und Unterschiedshöhen (U), bezogen auf das Einzugsgebiet der Ruhr, nach der vereinfachten Wasserhaushaltsgleichung N-A=U für das Abflussjahr 2023 aufgeführt. Die Werte wurden für Monate, Quartale, Halbjahre und Abflussjahre in mm ermittelt. Spalte 5 enthält das Verhältnis U/N in Prozent des Niederschlags. In Spalte 6 ist die Unterschiedshöhe der einzelnen Monate, Quartale und Halbjahre als Prozentsatz der in der letzten Zeile dieser Tabelle ausgewiesenen Gesamtunterschiedshöhen des Abflussjahres 2023 errechnet. Diese Werte geben an, wie viel Prozent der Gesamtunterschiedshöhe des Abflussjahres auf die einzelnen Zeitabschnitte entfallen. In den Spalten 7 bis 11 der Tabelle 5 sind zum Vergleich die entsprechenden Angaben für die Durchschnittswerte der Jahresreihe 1927/2022 enthalten. Die Werte der Tabelle 5 gestatten einen Überblick über die jahreszeitliche und größenmäßige Verteilung von N, A und U, wobei U näherungsweise der Gebietsverdunstung entspricht.

Dieser Ansatz gilt nur für längere Zeiträume, in denen die Änderung der im Boden und im Schnee gespeicherten Wasservorräte

vernachlässigt werden kann. Im Abflussjahr 2023 weisen keine Monate eine negative Unterschiedshöhe auf. Diese treten in der Regel dann auf, wenn im Vormonat gefallene und teilweise in einer Schneedecke zwischengespeicherte Niederschläge erst im Folgemonat abflusswirksam werden, sodass mehr Wasser aus dem Einzugsgebiet abfließt, als über den Niederschlag in das System eingebracht wurde.

Im Abflussjahr 2023 lag die Unterschiedshöhe mit 597 mm um 113 mm über dem langjährigen Mittelwert. Dieser Überschuss resultiert aus positiven Abweichungen von 49 mm im Winterhalbjahr und 64 mm im Sommerhalbjahr. Da die reale Verdunstungshöhe u. a. von dem zur Verfügung stehenden Wasser abhängt, ist der prozentuale Anteil der Verdunstung am Niederschlag (U/N) aussagekräftiger. Hier zeigt sich, dass 48 % des Niederschlags im gesamten Abflussjahr 2023 verdunstet sind. Dies sind etwa 4 % mehr als im langjährigen Mittel.

Im Mittel ist die Verdunstung zu 26 % auf das Winter- und zu 74 % auf das Sommerhalbjahr verteilt. Mit einem Verhältnis Winterhalbjahr/Sommerhalbjahr von 29 % zu 71 % zeigte die Verdunstung im Abflussjahr 2023 eine leichte Verschiebung zum Winterhalbjahr hin.

Tabelle 5: Niederschlags- (N), Abfluss- (A) und Unterschiedshöhen (U) in mm nach der vereinfachten Wasserhaushaltsgleichung für das Abflussjahr 2023 im Vergleich zu den Mittelwerten der Jahresreihe 1927/2022

Table 5: Precipitation (N), runoff (A) and depth differences (U) in mm according to the simplified water balance equation for the 2023 water year in comparison with the average values for the period 1927/2022

1	2	3	4	5	6	7	8	9	10	11
	2023					1927/2022				
	Ν -	- A =	= U	U/N	υ/Συ	N - A = U U/N			υ/Συ	
	mm	mm	mm	%	%	mm	mm	mm	%	%
November	59	19	40	68	7	95	51	44	46	9
Dezember	92	40	52	57	9	104	76	28	27	6
Januar	147	121	26	18	4	102	86	16	16	3
Februar	86	83	3	3	1	82	71	11	13	2
März	147	98	49	33	8	76	69	7	9	1
April	82	76	6	7	1	72	51	21	29	4
Mai	89	52	37	42	6	75	30	45	60	9
Juni	76	20	56	74	9	88	24	64	73	13
Juli	126	15	111	88	19	97	27	70	72	14
August	153	66	87	57	15	92	23	69	75	14
September	66	27	39	59	7	80	23	57	71	12
Oktober	123	32	91	74	15	84	32	52	62	11
1. Quartal	298	180	118	40	20	301	213	88	29	18
2. Quartal	315	257	58	18	10	230	191	39	17	8
WiHalbjahr	613	437	176	29	29	531	404	127	24	26
3. Quartal	291	87	204	70	34	260	81	179	69	37
4. Quartal	342	125	217	63	36	256	78	178	70	37
SoHalbjahr	633	212	421	67	71	516	159	357	69	74
	1.246	649	597	48	100	1.047	563	484	46	100

5 Entnahme und Entziehung

Entnahme und Entziehung sind zwei zentrale Begriffe zum Verständnis der Wassermengenwirtschaft im Einzugsgebiet der Ruhr. Bei der **Entnahme** handelt es sich um die Gesamtmenge des im Einzugsgebiet der Ruhr geförderten Wassers aus Quellen, Grundund Oberflächenwasser. Die **Entziehung** ist dabei der Anteil der Entnahme, der dem Einzugsgebiet der Ruhr durch Export in benachbarte Einzugsgebiete oder durch Verluste im Ruhreinzugsgebiet verloren geht.

Die Entnahmen werden jeweiligen Wasserklassen zugeordnet, deren Definitionen nachfolgend aufgeführt sind. Die Klasse A beinhaltet Entnahmen, die dem Verbandsgebiet dauernd und vollständig entzogen werden (z.B. öffentliche Wasserversorgung außerhalb des Verbandsgebiets, durch Überpumpen, Kesselspeisewasser) und die Klasse B beinhaltet Entnahmen, die dem Verbandsgebiet bis auf die bei der Nutzung auftretenden Verluste wieder zugeführt werden und nicht in die Klassen C1 oder C2 fallen (z.B. öffentliche Wasserversorgung innerhalb des Verbandsgebiets, Sanitärwasser, Betriebs-/ Produktionswasser). Der Klasse C1 werden Entnahmen zugeordnet, die im eigenen Betrieb z.B. als Betriebs-/Produktionswasser verwendet und der Klasse C2 solche Entnahmen, die im eigenen Betrieb ausschließlich zu Kühlzwecken verwendet werden.

Seit 1959 werden Informationen über die Wasserentnahmen und -entziehungen im Einzugsgebiet der Ruhr sowie über die Entnehmer, deren Entnahmestellen und die Verwendung des geförderten Wassers aus jährlich durchgeführten Fragebogenaktionen gewonnen. Diese Daten wurden seit dem Abflussjahr 1986 bis zum Abflussjahr 2003 mit dem DOS-basierten Programmsystem ENNE (Entnehmer) erfasst, verwaltet und ausgewertet. Seit dem Abflussjahr 2004 wird diese Aufgabe von dem datenbank-, web- und GIS-basierten Programmsystem WALruhr (Water Abstraction and Losses in the Ruhr catchment Area) wahrgenommen. Eine ausführliche Beschreibung des Programmsystems WALruhr findet sich im Ruhrwassermengenbericht 2004.

5.1 Anzahl der Entnehmer und Entnahmestellen

In Tabelle 6 sind die Anzahl und Gruppenzugehörigkeit der Entnehmer für das Abflussjahr 2023 und die zehn vorausgegangenen Abflussjahre zusammengestellt. Zusätzlich gibt die Tabelle einen Überblick über die Höhe der Rücklaufquote der angeschriebenen Entnehmer sowie über die Anzahl der erfassten Entnahmestellen.

Die Gesamtzahl der Wasserentnehmer im Einzugsgebiet der Ruhr hat im Abflussjahr 2023 mit 203 gegenüber dem Vorjahr um sechs Entnehmer abgenommen und liegt damit leicht unter dem Vorjahresniveau.

Tabelle 6: Anzahl der in den einzelnen Gruppen erfassten Entnehmer und Entnahmestellen in den Abflussjahren 2013 bis 2023 Table 6: Number of consumers and number of abstraction points in the

6: Number of consumers and number of abstraction points in the various groups of water consumers from 2013 to 2023

1	2	3	4	5	6	7	8	9	10	11	12
	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Anzahl der Entnehmer davon	163	161	158	158	160	205	205	206	209	209	203
Industrie	98	97	95	94	96	140	140	140	144	144	138
Kommunen and. WVU*	15 50	15 49	14 49	15 49	16 48	16 49	16 49	16 50	17 48	17 48	17 48
Anzahl der Entnahme- stellen	293	292	294	291	291	346	346	349	348	347	346
Entnehmer, die keine Auskunft gaben	5	4	1	2	1	0	0	0	2	1	1
davon Industrie	4	4	1	1	1	0	0	0	2	1	1
Kommunen and. WVU*	1 0	0	0	0	0	0	0	0	0	0	0

^{*)} WVU = Wasserversorgungsunternehmen

Die Anzahl der Entnahmestellen, für die Entnahmemengen gemeldet wurden, hat sich im Vergleich zum Vorjahr hingegen nur um eine Entnahmestelle verringert und liegt aktuell bei 346. Insgesamt werden derzeit im Programmsystem WALruhr 379 Entnahmestellen verwaltet, für die potenziell Entnahmemengen gemeldet werden können.

Im Gegensatz zu den Abflussjahren 2018 bis 2020, in denen alle Entnehmer Auskunft über ihre Entnahmestellen, Entnahmemengen und Entnahmearten gegeben haben, machte im Abflussjahr 2023 wie im Vorjahr ein Entnehmer keine Angaben zu den entsprechenden Werten.

5.2 Entnahmewassermengen in den einzelnen Entnahmeklassen

In Tabelle 7 sind in den Spalten 2 bis 6 die Wasserentnahmemengen pro Abflussjahr, aufgeteilt nach den in Anlehnung an die Satzung des Ruhrverbands genannten Entnahmeklassen A, B, C1 und C2, sowie die jährlichen Gesamtentnahmen im Einzugsgebiet der Ruhr ab 2020 zusammengestellt. Der Zuwachs (+) und der Rückgang (–) von Jahr zu Jahr wird in den einzelnen Entnahmeklassen prozentual angegeben. In Spalte 6 wird für das Abflussjahr 2023 der Anteil der Entnahme, der auf die einzelnen Entnahmeklassen entfällt, in Prozent der Gesamtentnahme angegeben. Weiterhin können der Tabelle 7 die Summen der Entnahmen sowohl in Mio. m³/a als auch in m³/s für die Jahre 2020 bis 2023 entnommen werden.

Die Gesamtmenge der Wasserentnahmen summierte sich im Abflussjahr 2023 auf 386,4 Mio. m³. Das sind 50,6 Mio. m³ oder 11,6 % weniger als im Vorjahr. Die Entziehung mit 192,1 Mio. m³ lag im Abflussjahr 2023 um 7,2 Mio. m³ oder 3,6 % niedriger als im Vorjahr. Der Anteil der Entziehung an der Entnahme liegt bei 49,7 %. Damit wird jeder zweite im Ruhreinzugsgebiet entnommene Kubikmeter Wasser entweder exportiert oder er geht verloren.

Der Rückgang der Entnahmen findet sich in allen Entnahmeklassen wieder. Besonders ausgeprägt ist er in der Entnahmeklasse "Kühlwasserentnahme im Ruhreinzugsgebiet" (C2) um 40,6 Mio. m³ (-28,6 %) und in der Entnahmeklasse "Industrielle Wasserentnahme im Ruhreinzugsgebiet" (C1) um 2,8 Mio. m³ (-15,6 %). Der Rückgang in den Entnahmeklassen "Entziehung aus dem Ruhreinzugsgebiet" (A) und "Entnahme für öffentliche Wasserversorgung im Ruhreinzugsgebiet" (B) mit 6,3 Mio. m³ (-3,9 %) bzw. 1,0 Mio. m³ (-0,9 %) fiel hingegen weniger deutlich aus.

Es bleibt festzuhalten, dass sich bei den Entnahmen der negative Trend der vorangegangenen Abflussjahre fortsetzte. Sie liegen in etwa auf dem Niveau der Abflussjahre 2015 und 2016. Insbesondere wegen des Rückgangs in der Entnahmeklasse A ging auch die Gesamtentziehung um 3,6 % zurück. Bild 8 zeigt die Entwicklung der beiden Größen "Gesamtentnahme" und "Gesamtentziehung" für die Abflussjahre 1900 bis 2023.

5.3 Kühlwasserentnahmemengen

Seit 1973 werden bei der Fragebogenaktion zusätzliche Angaben über die Verwendung des Kühlwassers erfragt (siehe Tabelle 8).

Die Kühlwasserentnahme im Einzugsgebiet der Ruhr nahm im Abflussjahr 2023, wie bei der Erläuterung zu den Gesamtentnahmen bereits dargestellt, um 40,6 Mio. m³ oder 28,6 % gegenüber dem Vorjahreswert auf 101,4 Mio. m³ ab. Ursache für den Rückgang sind im Wesentlichen niedrigere Einsatzzeiten eines GuD-Kraftwerkes an der Ruhr.

Im Abflussjahr 2023 wurden im Ruhreinzugsgebiet 26,2 % des entnommenen Wassers zu Kühlwasserzwecken verwendet. Differenziert man die Kühlwasserentnahmemengen nach ihrem Verwendungszweck (Tabelle 8), ist bei der Entnahme mit dem Verwendungszweck "Frischwasserkühlung" nach dem leichten Anstieg im vergangenen Abflussjahr ein deutlicher Rückgang zu verzeichnen. Im Vergleich zum Vorjahr nahmen die Entnahmen zur Frischwasserkühlung im Abflussjahr 2023 um 42,6 Mio. m³ ab. Die übrigen Verwendungszwecke spielen in diesem Zusammenhang nur eine untergeordnete Rolle.

Im Abflussjahr 2023 nahm die Gesamtanzahl der in der Statistik erfassten Kühlwasserentnahmestellen (Zeile 12 Spalten 4, 7, 10 und 13 in Tabelle 8) gegenüber dem Vorjahr um eine Stelle zu und liegt nun bei 135.

Tabelle 7: Entnahme und Entziehung im Einzugsgebiet der Ruhr in den Abflussjahren 2020 bis 2023 Table 7: Water abstraction and water losses in the Ruhr catchment area from 2020 to 2023

	1	2	3	4	5	6	7	8	9	10	11	12
Entnah	meklasse	Entnahme								Entziehung		
			2021	2022	2023			2020	2021	2022	2023	
		Mio.m ³	Mio.m ³	Mio.m³	Mio.m ³	%	%	Mio.m ³	Mio.m ³	Mio.m ³	Mio.m³	%
Α	Entziehung aus dem Ruhreinzugsgebiet	174,0	165,1	161,4	155,1	40,1	100	174,0	165,1	161,4	155,1	80,7
		+3,6%	-5,1%	-2,2%	-3,9%							
В	Entnahme für öffentliche	122,1	117,8	115,7	114,7	29,7	30	36,6	35,6	34,7	34,4	17,9
	Wasserversorgung im Ruhreinzugsgebiet	+0,7%	-3,5%	-1,8%	-0,9%							
C1	Industrielle Wasserentnahme	17,3	17,7	18,0	15,2	3,9	10	1,7	1,8	1,8	1,5	0,8
	im Ruhreinzugsgebiet	0,0%	+2,3%	+1,7%	-15,6%							
C2	Kühlwasserentnahme im	156,9	138,2	142,0	101,4	26,2	1	1,6	1,4	1,4	1,0	0,5
	Ruhreinzugsgebiet	+16,9%	-11,9%	+2,7%	-28,6%							
Gesam	t Summe in Mio. m³	470,3	438,8	437,0	386,4	100,0		213,9	203,6	199,3	192,1	100,0
	Summe in m³/s	14,9	13,9	13,9	12,3			6,8	6,5	6,3	6,1	
	Änderungen gegenüber dem Vorjahr	+6,7%	-6,7%	-0,4%	-11,6%			+3,1%	-4,8%	-2,1%	-3,6%	
	Entziehung in % der Entnahme							45,5	46,4	45,7	49,7	

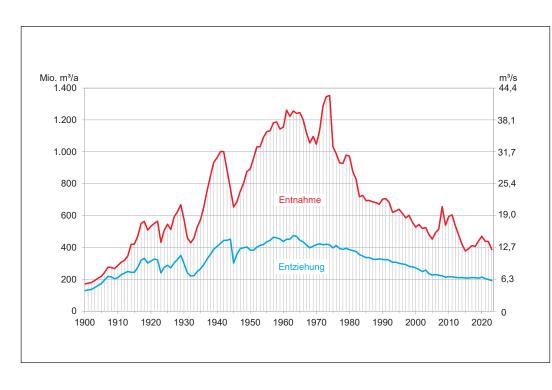


Bild 8: Jahreswerte der Entnahme und Entziehung im Einzugsgebiet der Ruhr von 1900 bis 2023 Fig. 8: Annual water abstraction and water losses in the Ruhr catch-ment area between 1900 and 2023

Tabelle 8: Aufteilung der Entnahmen von C2-Wasser nach dem Verwendungszweck in den Abflussjahren 2020 bis 2023
Table 8: Distribution of the abstraction of C2-water according to the utilization from 2020 to 2023

	1	2	3	4	5	6	7	8	9	10	11	12	13
Verw	Verwendungszweck		2020		20	21	erfasste Ent-	20	22	erfasste Ent-	20	23	erfasste Ent-
		Mio.m ³	%	nahme- stellen			nahme- stellen	Mio.m ³	%	nahme- stellen	Mio.m ³	%	nahme- stellen
1	Frischwasserkühlung	148,9	94,9	61	129,6	93,8	54	133,5	94,1	51	90,9	89,6	45
2	offener Kühlturmbetrieb	4,4	2,8	34	4,3	3,1	35	3,6	2,6	36	4,8	4,7	37
3	geschlossener Kühlkreislauf	1,4	0,9	30	1,7	1,2	34	2,0	1,4	33	3,1	3,0	36
4	Frischwasserkühlung und offener Kühlturmbetrieb	0,7	0,4	4	0,8	0,6	4	0,5	0,3	3	0,5	0,5	4
5	Frischwasserkühlung und geschlossener Kühlkreislauf	0,9	0,6	3	0,8	0,6	3	1,1	0,7	3	1,0	1,0	5
6	geschlossener Kühlkreislauf und offener Kühlturmbetrieb	0,2	0,1	5	0,3	0,2	6	0,5	0,3	6	0,6	0,6	6
7	Frischwasserkühlung, geschlossener Kreislauf und offener Kühlturmbetrieb	0,5	0,3	2	0,6	0,4	1	0,8	0,6	1	0,6	0,6	1
8	kleine Entnehmer unter 30.000 m³ Entnahme (geschätzte Werte)	_	-	-	-	_			-	-	-	_	-
9	keine Angabe	0	0,0	0	0	0,0	0	0	0,0	0	0,0	0,0	0
10	Gesamtkühlwassermenge	156,9	100,0	139	138,2	100,0	137	142,0	100,0	133	101,4	100,0	134
11	Wärmepumpen	0,0		1	0,0		1	0,0		1	0,0		1
12	Gesamt-C2-Wassermenge Entnahmestellen	156,9	100,0	140	138,2	100,0	138	142,0	100,0	134	101,4	100,0	135

5.4 Entziehung

In den Spalten 8 bis 11 der Tabelle 7 sind die Entziehungsmengen – bezogen auf die Ruhrmündung – in den einzelnen Entnahme-klassen für die Abflussjahre 2020 bis 2023 dargestellt. In Spalte 12 wird für das Abflussjahr 2023 der Anteil der Entziehung in den einzelnen Entnahmeklassen in Prozent der gesamten Entziehung angegeben.

Die Spalte 7 gibt das Verhältnis der Entziehung zur Entnahme in den einzelnen Entnahmeklassen an. Da in der Klasse A die Entnahmemengen gemeldet werden, die zur Wasserversorgung in benachbarte Einzugsgebiete exportiert oder im industriellen Bereich für reine Verdampfungsprozesse verwendet werden und somit dem Einzugsgebiet der Ruhr verloren gehen, entspricht die Entziehung in dieser Klasse der Entnahme zu 100 %. In der Klasse B "Entnahme für öffentliche Wasserversorgung" werden im Wesentlichen Verluste beim Aufbereitungsprozess, bei Hin- und Ableitung im Rohrleitungsnetz sowie Verluste beim Verbraucher mit 30 % berücksichtigt. Bei den industriellen Entnahmen in Klasse C1 werden prozessbedingte Verluste sowie Rohrleitungsverluste mit 10 % und bei der Kühlwasserentnahme in Klasse C2 Verdunstungsver-

luste mit 1 % veranschlagt. Weiterhin können der Tabelle 7, analog zu den Entnahmewerten, die Summen der Entziehung sowohl in Mio. m³/a als auch in m³/s sowie der prozentuale Zuwachs bzw. die prozentuale Abnahme dieser Menge von Jahr zu Jahr und der jeweilige prozentuale Anteil der Entziehung an der Entnahme in den einzelnen Abflussjahren entnommen werden.

Die **Gesamtentziehung** im Abflussjahr 2023 ist gegenüber dem Vorjahr von 199,3 Mio. m³ um 3,6 % auf 192,1 Mio. m³ zurückgegangen (Bild 8). Dies entspricht einer mittleren jährlichen Entziehung von 6,1 m³/s. Es gab seit 1900 erst sechs Mal kleinere Werte für die Gesamtentziehung. Im Vergleich der Entnahmeklassen hat die Entziehung aus dem Ruhreinzugsgebiet der Entnahmeklasse A im Gegensatz zum Vorjahr um 6,3 Mio. m³ abgenommen. Der berechnungsbedingte Entziehungsanteil der Entnahmeklasse B und C1 liegt um 0,3 Mio. m³, der der Entnahmeklasse C2 um 0,4 Mio. m³ niedriger als im Vorjahr.

Die Verteilung der Entziehung über die einzelnen Monate des Abflussjahres 2023 und der vorangegangenen fünf Abflussjahre ist in der Tabelle 9 bis Villigst und in der Tabelle 10 bis zur Mündung zusammengestellt.

Für die Beanspruchung des Talsperrensystems hat sich die Entziehung bis zum Pegel **Villigst**, der als Kontrollquerschnitt erst mit Inkrafttreten des RuhrVG im Jahre 1990 eingeführt wurde, wie in den Vorjahren als entscheidend erwiesen. Die höchste monatliche Entziehung wurde hier im Monat Juni mit 3,5 m³/s registriert. Sie lag damit um 0,1 m³/s über Vorjahresniveau. Im Gegensatz zum Vorjahr war das monatliche Minimum nicht kleiner als 3,0 m³/s. Dieser Wert wurde für sieben Monate registriert.

Die maximale monatliche Entziehung des Winterhalbjahres lag im Gegensatz zum vorangegangenen Abflussjahr nicht höher als die Entziehung eines Monats im Sommerhalbjahr. Im Mittel wurden im Winterhalbjahr 3,0 m³/s entzogen, 0,1 m³/s weniger als im Vorjahr. Im Gegensatz zum vorangegangenen Abflussjahr verzeichnete das Sommerhalbjahr mit 3,2 m³/s eine um 0,2 m³/s größere mittlere Entziehung als das Winterhalbjahr. Die mittlere jährliche Entziehung betrug 3,1 m³/s und wies damit dieselbe Größenordnung auf wie zuletzt das vorangegangene Abflussjahr 2022.

Für das Gesamteinzugsgebiet, d. h. bis zur **Ruhrmündung** (siehe Tabelle 10), lag der maximale monatliche Entziehungswert im Juni bei 7,0 m³/s. Er ist damit geringfügig um 0,1 m³/s größer als die maximale Entziehung des Vorjahres und 0,6 m³/s kleiner als der entsprechende Wert aus dem Abflussjahr 2018. Der minimale monatliche Entziehungswert trat im Dezember mit 5,8 m³/s auf. Wie im Vorjahr lag im Oktober die Entziehung bei 5,9 m³/s. Es ist daher seit über 100 Jahren erst das zweite Mal, dass ein Monatsmittel im Sommerhalbjahr unterhalb der 6,0-m³/s-Marke liegt. Das Winterhalbjahr wies mit 5,9 m³/s eine niedrigere Entziehung

auf als das Sommerhalbjahr mit 6,3 m³/s. Insgesamt gesehen lag die Entziehung an der Ruhrmündung um 0,2 m³/s unter dem Vorjahresniveau. Mit einer mittleren jährlichen Gesamtentziehung von 6,1 m³/s ist seit Inkrafttreten des RuhrVG die 7,0-m³/s-Marke zum 15. Mal unterschritten worden.

Ein Vergleich der monatlichen und jährlichen Entziehungswerte für die Abflussjahre 2018 bis 2023 am Kontrollquerschnitt Mündung zeigt, dass im Abflussjahr 2020 die Entziehung am größten und im Abflussjahr 2023 am kleinsten ausfiel, insbesondere im Sommerhalbjahr. Die entsprechenden Abweichungen am Kontrollquerschnitt Villigst fallen hingegen deutlich geringer aus.

Das Tagesmaximum der Entziehung wurde in Villigst am 13.06.2023 mit 4,04 m³/s und an der Mündung mit 7,84 m³/s am 12.06.2023 registriert (Bild 9). Damit liegen die Tagesmaxima im Abflussjahr 2023 in etwa auf dem Niveau der Tagesmaxima aus dem Vorjahr. Die höchste Tagesentziehung liegt in Villigst um 15 % und an der Mündung um 12 % über der mittleren Entziehung des Monats Juni sowie um 30 % in Villigst und 29 % an der Mündung über der mittleren jährlichen Entziehung.

Die Tagesminima wurden in Villigst mit 2,56 m³/s am 01.01.2023 und an der Mündung mit 5,33 m³/s am 13.01.2023 ermittelt. Das Tagesminimum entspricht in Villigst dem Vorjahreswert, an der Mündung liegt es leicht unter dem entsprechenden Vorjahreswert. In Bild 9 lassen sich sowohl die maximalen als auch die minimalen Extrema deutlich erkennen.

Tabelle 9: Entziehung aus dem Einzugsgebiet der Ruhr bis Pegel Villigst in den Abflussjahren 2018 bis 2023

Table 9: Water losses from the Ruhr catchment basin measured at the Villigst gauging station from 2018 to 2023

1	2	3	4	5	6	7
Monat	2018	2019	2020	2021	2022	2023
Williat	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
November Dezember Januar Februar März April	3,1 3,0 3,1 3,1 3,1 3,3	3,2 3,1 3,1 3,1 3,1 3,2	3,2 3,1 3,1 3,1 3,2 3,4	3,1 3,1 3,1 3,3 3,2 3,2	3,0 3,0 3,1 3,1 3,2 3,2	3,0 3,0 3,0 3,0 3,0 3,0
Winterhalbjahr	3,1	3,1	3,2	3,2	3,1	3,0
Mai Juni Juli August September Oktober	3,3 3,3 3,6 3,3 3,1 3,0	3,2 3,5 3,5 3,3 3,2 3,1	3,6 3,6 3,3 3,6 3,3 3,1	3,2 3,6 3,1 3,0 3,1 3,0	3,3 3,3 3,2 3,4 3,0 2,8	3,2 3,5 3,1 3,1 3,1 3,0
Sommerhalbjahr	3,3	3,3	3,4	3,2	3,2	3,2
Mittel	3,2	3,2	3,3	3,2	3,1	3,1
Änderungen in % zum Vorjahr	0,0	0,0	+3,1	-3,0	-3,1	0,0

Tabelle 10: Entziehung aus dem Einzugsgebiet der Ruhr bis zur Mündung in den Abflussjahren 2018 bis 2023

Table 10: Water losses from the Ruhr catchment basin from 2018 to 2023 at the mouth (total losses)

1	2	3	4	5	6	7
Monat	2018	2019	2020	2021	2022	2023
Monat	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
November Dezember Januar Februar März April	6,4 6,2 6,4 6,5 6,5 6,7	6,5 6,4 6,3 6,5 6,3 6,5	6,4 6,3 6,3 6,4 6,5 7,1	6,4 6,3 6,4 6,8 6,6 6,6	6,3 6,2 6,2 6,2 6,4 6,1	5,9 5,8 5,9 6,0 6,0 6,0
Winterhalbjahr	6,5	6,4	6,5	6,5	6,2	5,9
Mai Juni Juli August September Oktober	6,9 6,8 7,6 7,1 6,5 6,3	6,4 7,2 7,3 6,7 6,5 6,4	7,4 7,4 6,8 7,5 6,8 6,4	6,5 7,3 6,2 6,0 6,2 6,2	6,5 6,6 6,4 6,9 6,2 5,9	6,2 7,0 6,1 6,1 6,2 5,9
Sommerhalbjahr	6,9	6,8	7,1	6,4	6,4	6,3
Mittel	6,7	6,6	6,8	6,5	6,3	6,1
Änderungen in % zum Vorjahr	0,0	-1,5	+3,0	-4,4	-3,1	-3,2

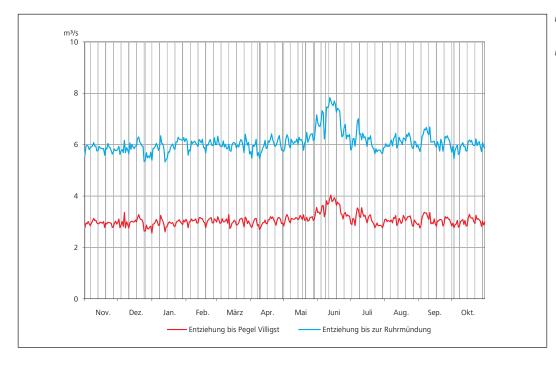


Bild 9: Tageswerte der Entziehung im Abflussjahr 2023 bis Villigst und Ruhrmünduna

Ruhrmündung Fig. 9: Daily water losses during the 2023 water year measured at the Villigst control section and in the total catchment area

Neben der höheren Entziehung im Juni, die die hohe Abhängigkeit der Entziehung von den maximalen Tagestemperaturen belegen, ist aus Bild 9 auch der Einfluss des Wochentages (Werktag, Wochenende, Feiertag) als zweite maßgebende Komponente für die Entziehung ersichtlich. Zur besseren Einordnung sind Sonnund Feiertage durch eine senkrechte Linie gekennzeichnet.

6 Baumaßnahmen mit Einfluss auf die Talsperrenbewirtschaftung

Im Abflussjahr 2023 wurden an den Talsperren des Ruhrverbands Revisions- und Reparaturmaßnahmen so durchgeführt, dass die Verfügbarkeit des Talsperrensystems jederzeit gewährleistet war. Erwähnenswert sind die folgenden Maßnahmen:

• Sorpetalsperre

Im Herbst 2023 fanden an der Sorpetalsperre eine Sedimentberäumung im Vorbecken Amecke sowie eine Erneuerung der Mastixversiegelung am Vordamm Amecke statt. Hierzu wurde zwischen Anfang März und Ende Mai die Stauhöhe im Hauptbecken auf einem Niveau von ca. 281,50 müNHN gehalten sowie ab Anfang Juni bis Mitte Juli die Stauhöhe auf initial 279,00 müNHN abgesenkt. Nach Abschluss beider Arbeiten konnte Ende Oktober mit dem Wiedereinstau begonnen werden.

Versetalsperre

Wegen eines Defektes am Durchlass DN 500 unter dem Klamer Parkplatz an der Versetalsperre kam es zu einem Erdfall, was eine Sperrung des dortigen Parkplatzes aus Sicherheitsgründen zur Folge hatte. Zur Instandsetzung der Rohrleitung wurde die Versetalsperre von Mitte Mai bis Mitte September auf eine Stauhöhe unter 386,00 müNHN abgesenkt. Nach Abschluss der Instandsetzung konnte Ende Oktober der Wiedereinstau begonnen werden.

Ansonsten fanden im Berichtszeitraum keine weiteren Bauund Revisionsmaßnahmen mit Einfluss auf die Talsperrenbewirtschaftung statt.

7 Zuschussleistungen aus den Talsperren

7.1 Grundlagen und Begriffe

Nach § 2 des Ruhrverbandsgesetzes vom 7.2.1990 (RuhrVG) ist der Abfluss in der Ruhr "so zu regeln, dass das täglich fortschreitende arithmetische Mittel aus fünf aufeinander folgenden Tageswerten des Abflusses an jedem Querschnitt der Ruhr unterhalb des Pegels Hattingen einen Wert von 15 m³/s und am Pegel Villigst einen Wert von 8,4 m³/s nicht unterschreitet. Der niedrigste Tageswert des Abflusses soll unterhalb des Pegels Hattingen 13 m³/s und am Pegel Villigst 7,5 m³/s nicht unterschreiten."

Die Berechnung des gemäß RuhrVG erforderlichen Zuschusses aus den Talsperren erfolgt auf der Basis von Tagesmittelwerten des Abflusses an den Kontrollquerschnitten Villigst, Hattingen und Ruhrmündung (ermittelt auf Basis des Pegels Mülheim). Als Betrag der Entziehung wird der jeweilige Monatsmittelwert angesetzt.

Für die Berechnung des erforderlichen Zuschusses ist eine Reihe von Größen von Bedeutung, die im Folgenden näher erläutert werden:

• der unbeeinflusste Abfluss

ist derjenige Abfluss, der sich einstellen würde, wenn im Einzugsgebiet der Ruhr keinerlei Entnahme oder Entziehung stattfände und keine Talsperren oder Stauhaltungen vorhanden wären;

• der Abfluss ohne Talsperreneinfluss ist derjenige Abfluss, der sich einstellen würde, wenn im Einzugs-

ist derjenige Abfluss, der sich einstellen würde, wenn im Einzugsgebiet der Ruhr zwar Entnahme und Entziehung stattfänden, jedoch keine Talsperren oder Stauhaltungen vorhanden wären;

• der gemessene Abfluss

ist der jenige Abfluss, der mit Hilfe von Pegelanlagen an verschiedenen Kontrollquerschnitten der Ruhr gemessen werden kann und sowohl durch die Steuerung der Talsperren und Stauhaltungen als auch durch Entnahmen und Entziehung beeinflusst ist.

Die Ermittlung des Monatsmittelwertes der Entziehung, der täglichen Stauinhaltsänderungen und des daraus resultierenden unbeeinflussten Abflusses hat sich gegenüber der Bewirtschaftung nach dem Ruhrtalsperrengesetz von 1913 nicht geändert. Nach Inkrafttreten des Ruhrverbandsgesetzes im Jahr 1990 wird zudem zusätzlich der Abfluss ohne Talsperreneinfluss an den drei Kontrollquerschnitten Villigst, Hattingen und Ruhrmündung (Tabellen auf S. 39 bis S. 50 im Anhang) ermittelt.

Die Höhe des Abflusses ohne Talsperreneinfluss wird benötigt, um die Zuschussleistung des Talsperrensystems quantifizieren zu können. Es wird zwischen dem erforderlichen und dem geleisteten Zuschuss, bezogen auf die jeweiligen Kontrollquerschnitte, unterschieden:

• der erforderliche Zuschuss

ist derjenige Zuschuss, den die Talsperren des Ruhrverbands zur Erfüllung ihrer gesetzlichen Aufgaben leisten müssen. Fällt am jeweiligen Kontrollquerschnitt der Abfluss ohne Talsperreneinfluss rein rechnerisch unter den vom RuhrVG vorgegebenen Mindestabfluss, so hat das Talsperrensystem diesen fehlenden Abfluss auszugleichen;

• der geleistete Zuschuss

ist derjenige Zuschuss, den die Talsperren des Ruhrverbands tatsächlich geleistet haben. Um der aufgrund der langen Fließwege vorhandenen Trägheit des Systems Rechnung zu tragen und auch um Entnahmespitzen jederzeit sicher abdecken zu können, muss der tatsächlich geleistete Zuschuss in der Regel höher sein als der gesetzlich geforderte Zuschuss.

Die Differenz zwischen dem geleisteten und dem erforderlichen Zuschuss repräsentiert die Mehr- oder gegebenenfalls auch Minderabgabe des Talsperrensystems. In den entsprechenden Tabellen auf S. 55 bis 60 im Anhang ist die Mehrleistung schwarz, die Minderleistung rot dargestellt. Im Abflussjahr 2023 gab es am Kontrollquerschnitt Villigst in den Monaten November, Dezember und Juni insgesamt acht Tage, an dem es zu einer Minderleistung gekommen ist.

Eine Minderabgabe hat nicht zwingend zur Folge, dass die gemessenen Abflüsse an den jeweiligen Kontrollquerschnitten die vorgeschriebenen Grenzwerte unterschreiten, solange die gemäß RuhrVG festgelegten Tagesmittelwerte eingehalten werden. Dies war jedoch im Abflussjahr 2023, mit Ausnahme eines Tages am Pegel Villigst, zu jeder Zeit der Fall. Eine ausführliche Beschreibung über die Einhaltung der Grenzwerte findet sich in Kapitel 3.3.

Die Ermittlung des erforderlichen und des geleisteten Zuschusses ist aus den obengenannten Gründen (Systemträgheit, Versorgungssicherheit) auf das 5-Tagesmittel in Höhe von 8,4 m³/s (Pegel Villigst) und 15 m³/s (unterhalb Pegel Hattingen) ausgerichtet. In den Zeiten mit reduzierten Grenzwerten (siehe Kapitel 3) gelten entsprechend die jeweils gültigen reduzierten Grenzwerte für das 5-Tagesmittel. In den Tabellen auf S. 51 bis 54 im Anhang sind die Grenzwertunterschreitungen des 5-Tagesmittelwertes rot gekennzeichnet.

7.2 Jahreszeitlicher Verlauf

In der Tabelle 11 a-c sind – getrennt für die Kontrollquerschnitte Villigst, Hattingen und Mündung – der nach dem RuhrVG erforderliche und geleistete Zuschuss sowie die daraus resultierende Anzahl von Tagen mit Zuschuss für das Abflussjahr 2023 zusammengestellt.

Die Anzahl der zuschusspflichtigen Tage zeigt folgende Besonderheiten auf:

Tabelle 11: Erforderlicher und geleisteter Zuschuss im Abflussjahr 2023 Table 11: Required and actual discharge during the 2023 water year a) Pegel Villigst

1	2	3	4	5
Monat	Tage mit Zuschuss	geleisteter Zuschuss Mio. m³	erforderlicher Zuschuss Mio. m³	Differenz + Mehrabgabe - Minderabgabe Mio. m ³
				-
November	18	4,41	3,51	+0,90
Dezember	3	0,17	0,13	+0,04
Januar	-	-	-	-
Februar	-	-	-	-
März	-	-	-	-
April	-	-	-	-
Winter	21	4,58	3,64	+0,95
Mai	-	-	-	-
Juni	12	4,50	4,15	+0,34
Juli	21	8,11	5,90	+2,21
August	-	-	-	-
September	5	2,33	0,24	+2,09
Oktober	10	4,02	1,51	+2,51
Sommer	48	18,96	11,80	+7,15
Jahr	69	23,54	15,44	+8,10

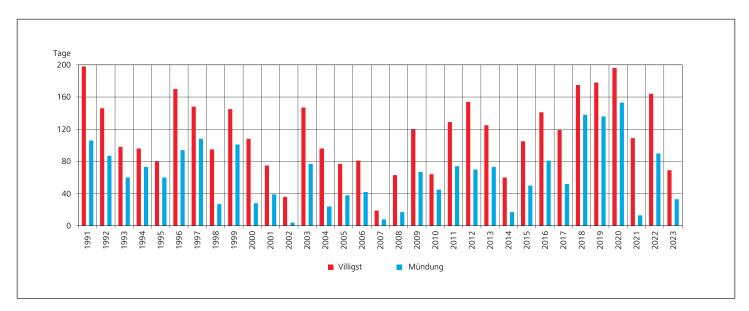


Bild 10: Anzahl der zuschusspflichtigen Tage an den Kontrollquerschnitten Villigst und Ruhrmündung für den Zeitraum 1991 bis 2023
Fig. 10: Number of days with additional supply from the reservoirs at the cross sections at Villigst and at the mouth of the Ruhr River during 1991 to 2023

- Zuschusspflicht herrschte im Abflussjahr 2023 an allen drei Kontrollquerschnitten noch im November und vereinzelt Anfang Dezember sowie ab Juni vor.
- Im Sommerhalbjahr herrschte in Villigst an nur 48 Tagen Zuschusspflicht. Dies ist seit 1990 der viertkleinste Wert für ein Sommerhalbjahr. Zuletzt gab es im Abflussjahr 2014 weniger Zuschusstage im Sommerhalbjahr.

In Bild 10 ist die Anzahl der zuschusspflichtigen Tage an den Kontrollquerschnitten Villigst und Ruhrmündung seit Inkrafttreten des RuhrVG dargestellt. Markant sticht der deutliche Rückgang des Abflussjahres 2021 im Vergleich zu der hohen Anzahl zuschusspflichtiger Tage in den vorangegangenen drei Abflussjahren 2018 bis 2020 sowie dem nachfolgenden Abflussjahr 2022 hervor. Der Berechnung zugrunde liegen die jeweils

b) Pegel Hattingen

		2		_
1	2	3	4	5
Monat	Tage mit Zuschuss	geleisteter Zuschuss	erforderlicher Zuschuss	Differenz + Mehrabgabe - Minderabgabe
		Mio. m³	Mio. m³	Mio. m ³
November	7	3,47	1,00	+2,47
Dezember	-	-	-	-
Januar	-	-	-	-
Februar	-	-	-	-
März	-	-	-	-
April	-	-	-	-
Winter	7	3,47	1,00	+2,47
Mai	-	-	-	-
Juni	7	5,91	2,58	+3,33
Juli	14	12,13	5,33	+6,80
August	-	-	-	-
September	-	-	-	-
Oktober	2	1,76	0,42	+1,33
Sommer	23	19,80	8,34	+11,45
Jahr	30	23,27	9,34	+13,93

c) Ruhrmündung

1	2	3	4	5
Monat	Tage mit Zuschuss	geleisteter Zuschuss Mio. m³	erforderlicher Zuschuss Mio. m³	Differenz + Mehrabgabe - Minderabgabe Mio. m³
November Dezember Januar Februar März April	7 1 - - -	3,05 0,10 - - -	1,28 0,03 - - -	+1,76 +0,07 - - -
Winter	8	3,15	1,31	+1,84
Mai Juni Juli August September Oktober	- 8 14 - - 3	- 6,42 11,79 - - - 2,53	2,99 5,56 - - - 0,62	- +3,43 +6,22 - - +1,91
Sommer	25	20,73	9,17	+11,56
Jahr	33	23,88	10,48	+13,40

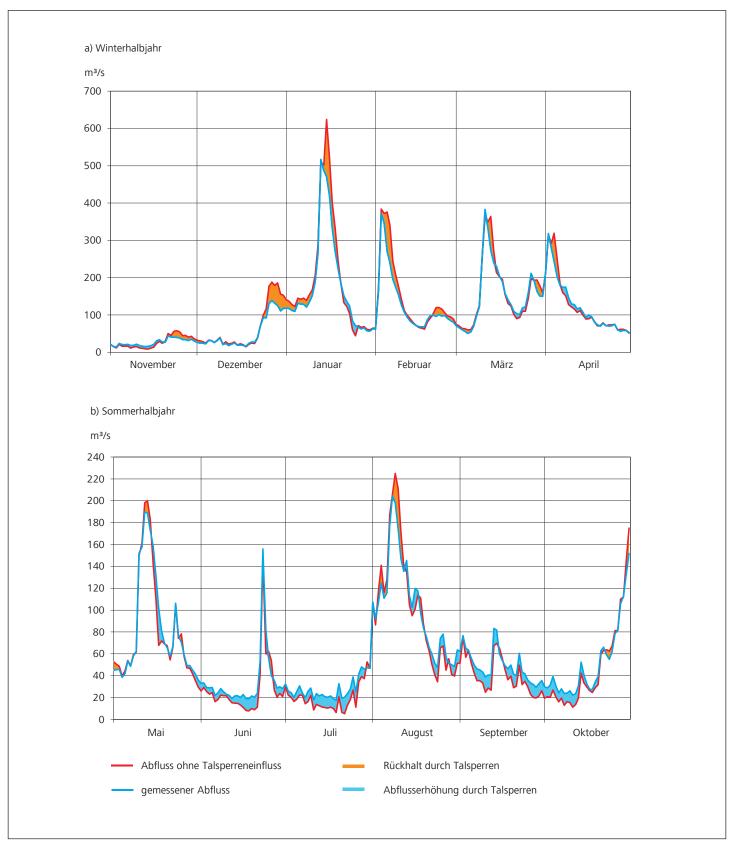


Bild 13: Auswirkung der Talsperren auf das Abflussgeschehen (Tagesmittelwerte) an der Ruhrmündung im Abflussjahr 2023 Fig. 13: Impact of the reservoirs on the discharge (mean daily runoff) of the Ruhr River mouth during the 2023 water year

geltenden Grenzwerte für den 5-Tagesmittelwert, d. h. Grenzwertreduzierungen der vergangenen Abflussjahre sind berücksichtigt.

Aufgrund der oftmals ausbleibenden zuschusspflichtigen Witterung im Sommerhalbjahr lag die Anzahl der Zuschusstage im Abflussjahr 2023 in Villigst um 95 Tage sowie in Hattingen und an der Ruhrmündung um 65 bzw. um 57 Tage sehr deutlich unter der des vorangegangen Abflussjahres. Es zeigt sich, dass wie in allen Jahren seit 1991 auch im Abflussjahr 2023 das Talsperrensystem zur Aufrechterhaltung des vorgegebenen Mindestabflusses am Pegel Villigst sehr viel stärker beansprucht wurde als an den übrigen Kontrollquerschnitten.

Für das Abflussjahr 2023 wurden für **Villigst** insgesamt 69 zuschusspflichtige Tage ermittelt. Dies sind 95 Tage weniger als im Vorjahr und 47 Tage weniger als im Durchschnitt der Abflussjahre 1991/2022. Ordnet man diesen Wert in die Jahresreihe seit Inkrafttreten des RuhrVG im Jahr 1990 ein, so gab es erst fünf Abflussjahre mit einer niedrigeren Anzahl zuschusspflichtiger Tage. Ohne Grenzwertreduzierung wäre an 14 Tagen mehr Zuschuss erforderlich gewesen.

Am Kontrollquerschnitt **Hattingen** an der unteren Ruhr war im Abflussjahr 2023 an 30 Tagen Zuschuss erforderlich und damit an 65 weniger als im Vorjahr. Der Wert liegt 31 Tage unter dem Durchschnitt der Abflussjahre 1991/2022. In der Zeitreihe seit 1991 ist es die achtkleinste Summe zuschusspflichtiger Tage. Ohne Grenzwertreduzierung wäre an drei Tagen mehr Zuschuss erforderlich gewesen.

An der **Mündung** der Ruhr in den Rhein, hier spiegelt sich die Entwicklung des Gesamteinzugsgebietes wider, waren 33 zuschusspflichtige Tage im Abflussjahr 2023 zu verzeichnen. Dies waren 57 Tage weniger als im vorangegangenen Abflussjahr und 31 weniger als im Durchschnitt der Abflussjahre 1991/2022. Wie Bild 10 zeigt, ist es in der Zeitreihe seit 1991 der neuntkleinste Wert. Ohne Grenzwertreduzierung wäre an zwei Tagen mehr Zuschuss erforderlich gewesen.

Insgesamt gab es im Abflussjahr 2023 an der Ruhrmündung 48 %, in Hattingen 51 % sowie in Villigst 41 % weniger Tage mit Zuschusspflicht, als nach dem jeweiligen langjährigen Mittel zu erwarten gewesen wäre.

Betrachtet man den ebenfalls in der Tabelle 11 a-c aufgelisteten erforderlichen Zuschuss, der ein genaueres Maß für die Inanspruchnahme des Talsperrensystems darstellt, wird deutlich, dass die Summe des geleisteten Zuschusses an den drei Kontrollquerschnitten auf Monatsbasis stets größer war als der gesetzlich erforderliche. Auch hier wird die unterdurchschnittliche Belastung der Talsperren im Sommerhalbjahr sowie im gesamten Abflussjahr 2023 für alle Kontrollquerschnitte sichtbar. Der erforderliche Zuschuss war in diesen beiden Zeiträumen in Villigst der viertniedrigste, in Hattingen der achtniedrigste und an der Ruhrmündung der neuntniedrigste seit Inkrafttreten des RuhrVG im Jahr 1990.

Der für das gesamte Abflussjahr 2023 ermittelte erforderliche Zuschuss liegt in Villigst um 66%, in Hattingen um 72 % und an der Mündung um 73 % unter dem für den Zeitraum 1991/2022 ermittelten durchschnittlichen erforderlichen Zuschuss.

Weitere Einzelheiten über die Zuschussleistung aus den Talsperren können den zugehörigen Tabellen im Anhang entnommen werden.

Bild 11 zeigt am Beispiel des Abflusses an der Ruhrmündung eindrucksvoll die Wirkung des Talsperrensystems auf das Abflussgeschehen im Abflussjahr 2023. Die Trennung in das Winter- (Bild 11 a) und Sommerhalbjahr (Bild 11 b) erfolgt der besseren Anschaulichkeit wegen.

Im oberen Bildteil für das Winterhalbjahr erkennt man die für die Jahreszeit typischen Rückhalt- und damit Aufstauphasen (orangefarbene Füllbereiche) vor allem in den Monaten Dezember, Januar und Februar. Im November ist eine Phase mit einer geringen Abflusserhöhung (hellblaufarbige Füllbereiche) zu erkennen.

Der untere Bildteil für das Sommerhalbjahr zeigt trotz der oftmals in Bezug auf die einzuhaltenden Grenzwerte für den Mindestabfluss hohen Wasserführung vielfach Phasen mit einer Abflusserhöhung durch Talsperren (hellblaufarbene Füllbereiche). Diese sind nur im Juni und Juli durch die erforderlichen Zuschussleistungen der Talsperren zur Einhaltung der Mindestabflüsse bedingt. In den Monaten ab August wurden an der Henne-, Möhne- und Biggetalsperre, an denen ab dem 01. November ein vorgeschriebener Hochwasserschutzraum verfügbar sein muss, die Abgaben derart gesteuert, dass zum genannten Zeitraum an den drei Talsperren der erforderliche Hochwasserschutzraum verfügbar war. Zusätzlich bestand für die in Kapitel 6 beschriebenen Baumaßnahmen das Erfordernis erhöhter Abgaben zur Erreichung bzw. Einhaltung für die Baumaßnahme erforderlicher maximaler Stauhöhen.

Im Gegensatz zu den vorangegangenen Abflussjahren verläuft die Ganglinie des Abflusses ohne Talsperreneinfluss (rot) im Abflussjahr 2023 nicht auf oder sehr nahe an der Abszissenachse. Dies bedeutet, dass im Abflussjahr 2023 die Ruhr an der Mündung auch ohne Beeinflussung durch die Talsperren nicht trockengefallen wäre. Auch in Villigst wäre die Ruhr nicht ausgetrocknet gewesen.

In Bild 11 b stehen die Zeiten mit Abflusserhöhung nicht im Widerspruch zu Tabelle 11 c, die z.B. für die Monate August bis Oktober praktisch keine Zuschusspflicht aufweist. Dies liegt darin begründet, dass für Tabelle 11 nur an Tagen mit erforderlichem Zuschuss der geleistete Zuschuss berechnet wird.

8 Stauinhaltsbewegung

Die zeitliche Entwicklung und die Zusammensetzung des Gesamtstauinhaltes aus den Stauinhalten der einzelnen Talsperren ist in Tabelle 12 numerisch dargestellt, wobei die Stauinhalte jeweils zu Beginn der einzelnen Monate sowie mit den höchsten und niedrigsten Werten des Abflussjahres 2023 aufgeführt sind. Der Vergleichszeitraum des Gesamtstauinhaltes beginnt mit dem Abflussjahr 1968, da die Biggetalsperre seit diesem Zeitpunkt wasserwirtschaftlich vollständig zur Verfügung steht.

Zu Beginn des Abflussjahres 2023, d.h. am 1. November 2022, lag der Gesamtstauinhalt aller Talsperren im Ruhreinzugsgebiet aufgrund der Beanspruchung in den vorangegangenen Sommermonaten (siehe Bericht Ruhrwassermenge 2022) mit 310,2 Mio. m³ (entspricht 66 % vom Vollstau) um knapp 7 % unter dem langjährigen Mittel (Tabelle 12). Er gehört damit zu dem Drittel der niedrigsten Gesamtstauinhalte zu Beginn eines Abflussjahres seit 1968.

Bis Mitte November nahm der Stauinhalt aufgrund von Trockenheit und einhergehender Zuschusspflicht zunächst weiter ab und

erreichte am 17. November 2022 mit 303,7 Millionen Kubikmetern (bzw. 64 Prozent vom Vollstau) den niedrigsten Füllstand des Abflussjahres 2023.

In den Folgemonaten konnten die Talsperren im Ruhreinzugsgebiet insbesondere durch die vier hochwasserauslösenden Niederschlagsereignisse (Mitte Januar, Anfang Februar, Anfang März und Anfang April) unter Berücksichtigung der in Henne-, Möhne- und Biggetalsperre für die jeweiligen Monate vorgeschriebenen Hochwasserschutzräume aufgestaut werden. Mitte Januar wurde dabei letztmalig im Abflussjahr 2023 ein unterdurchschnittlicher Füllstand erreicht. Am 04. April 2023 erreichte der Gesamtstauinhalt mit 455,5 Mio. m³ (bzw. 96 % vom Vollstau, 6 % über dem langjährigen Mittel) den höchsten Gesamtfüllstand im Abflussjahr 2023.

Nach kurzem Abstau zur Schaffung neuer Freiräume in den Talsperren zum Hochwasserschutz und neuerlich leichtem Anstieg bis Mitte Mai wurde danach das Talsperrenverbundsystem in der Folgezeit bis Ende Juli zur Trinkwasserversorgung und zur Aufrechterhaltung der Mindestwasserführung in der Ruhr sowie zur Durchführung von Baumaßnahmen an den Talsperren zunächst bis Ende August kontinuierlich abgestaut.

Tabelle 12: Stauinhalte der Talsperren zu Beginn der einzelnen Monate des Abflussjahres 2023
Table 12: Storage volume of the reservoirs at the beginning of each month during the 2023 water year

1	2	3	4	5	6	7	8	9	10
Talsperren	Bigge	Möhne	Sorpe	Henne	Verse	Ennepe		Gesamtstauinhalt	t
Inhalt bei Vollstau	171,7 Mio.m³	134,5 Mio.m³	70,4 Mio.m³	38,4 Mio.m³	32,9 Mio.m³	12,6 Mio.m³		,4 *) o.m³	im Mittel 1968/2022
Monat	Mio.m ³	Mio.m³	Mio.m³	Mio.m³	Mio.m ³	Mio.m ³	Mio.m³	%	%
1. November 2022	112,5	87,9	48,6	22,0	25,6	5,8	310,2	66	70
1. Dezember 2022	120,0	84,1	48,8	21,8	25,4	6,3	314,8	67	72
1. Januar 2023	136,2	91,5	51,1	24,8	26,0	9,3	349,1	74	78
1. Februar 2023	138,2	111,6	59,6	31,4	29,9	11,2	392,7	83	82
1. März 2023	154,2	126,0	65,4	33,9	30,5	11,7	432,4	92	86
1. April 2023	160,9	130,2	64,8	35,3	31,0	11,3	444,4	94	91
1. Mai 2023	164,4	130,8	64,4	36,9	31,0	11,4	449,7	95	91
1. Juni 2023	162,2	129,3	64,2	36,9	30,4	11,2	444,3	94	90
1. Juli 2023	156,9	129,6	58,3	36,8	28,6	9,9	429,3	91	86
1. August 2023	149,2	124,5	57,1	34,7	26,8	9,2	410,6	87	82
1. September 2023	147,6	126,1	56,2	34,4	26,7	9,8	411,0	87	76
1. Oktober 2023	139,4	118,3	55,1	32,8	24,9	9,7	389,6	83	72
1. November 2023	137,3	117,5	56,4	31,2	24,4	10,1	387,1	82	70
minimaler Stauinhalt Datum	110,5 16.11.2022	83,7 24.11.2022	48,6 14.11.2022	21,5 20.11.2022	24,0 25.10.2023	5,5 16.11.2022	303,7 17.11.2022	64	
maximaler Stauinhalt Datum	167,7 04.04.2023	132,0 12.05.2023	65,4 28.02.2023	37,1 05.05.2023	31,5 03.04.2023	12,4 03.04.2023	455,5 04.04.2023	96	

^{*)} einschließlich kleiner Talsperren des Ruhrverbands und weiterer Betreiber

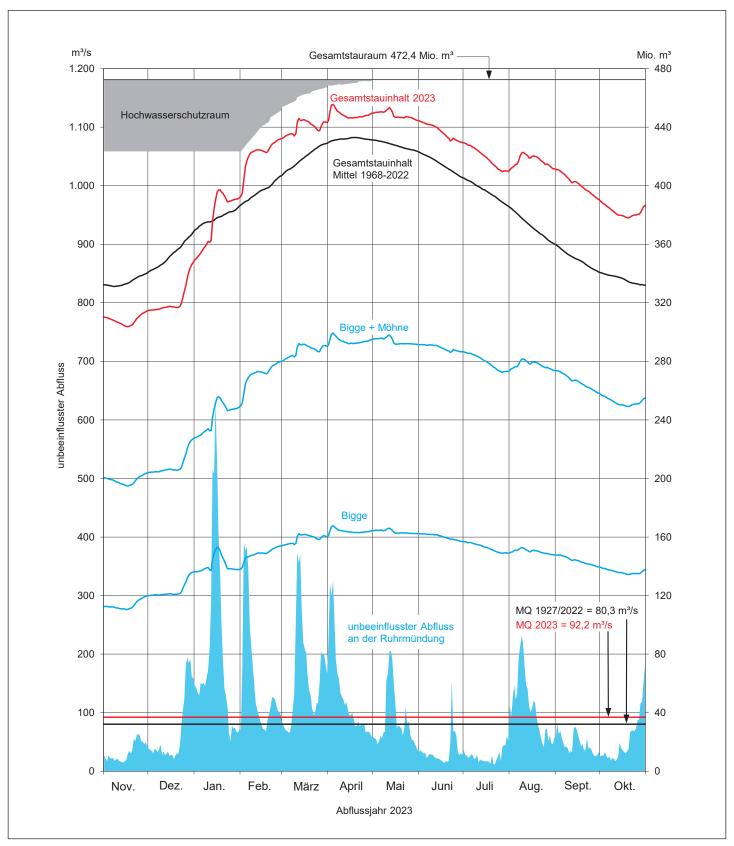


Bild 14: Stauinhalte der Talsperren und unbeeinflusster Abfluss der Ruhr im Abflussjahr 2023 Fig. 14: Reservoir storage volume and unaffected runoff in the Ruhr River during the 2023 water year

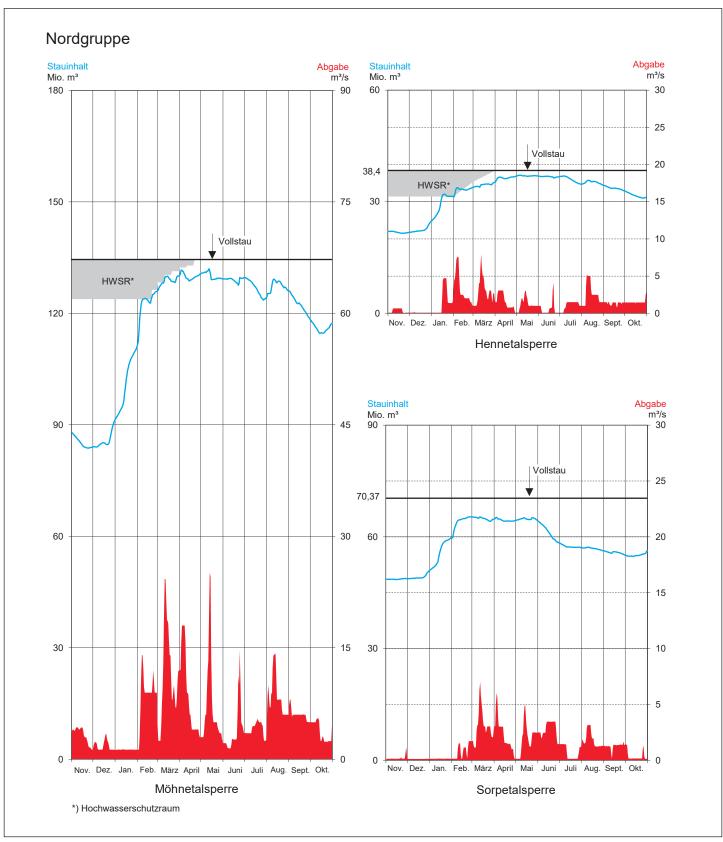


Bild 13: Stauinhaltsganglinien und Abgaben der Talsperren der Nordgruppe im Abflussjahr 2023 Fig. 13: Storage volume and discharge hydrographs of the northern group of reservoirs during the 2023 water year

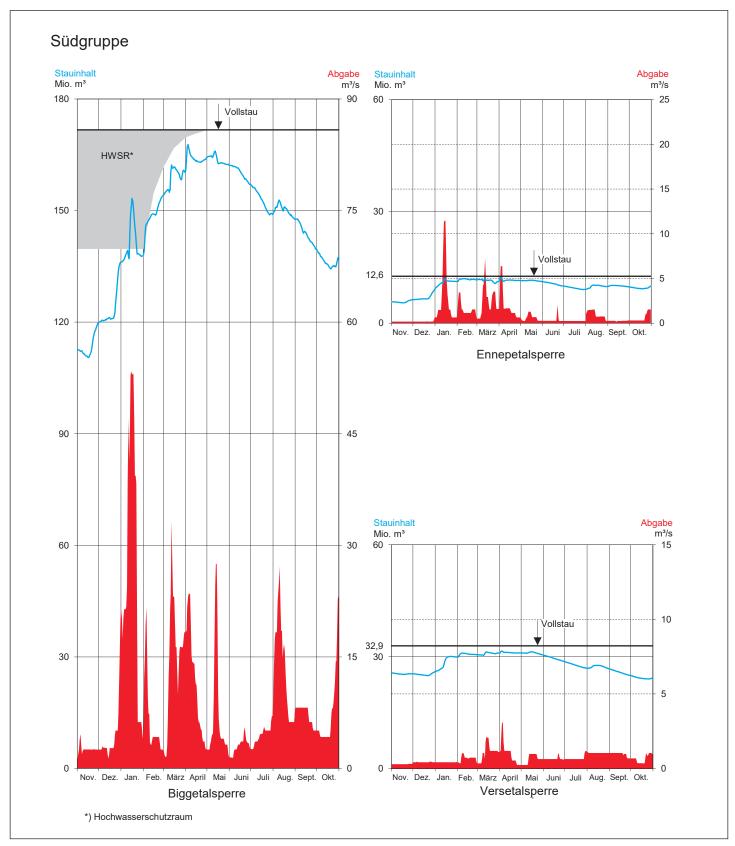


Bild 14: Stauinhaltsganglinien und Abgaben der Talsperren der Südgruppe im Abflussjahr 2023 Fig. 14: Storage volume and discharge hydrographs of the southern group of reservoirs during the 2023 water year

Niederschlagsreiche Tage führten dann zu einem vorübergehenden Einstau, bevor ab Mitte August ein neuerlicher Abstau einsetzte, der bis zum Mitte Oktober anhielt.

Nach einem leichten Anstieg lag am Ende des Abflussjahres am 31. Oktober 2023 der Gesamtstauinhalt bei 386,5 Mio. m³ (bzw. 82 % vom Vollstau) um 16 % über dem langjährigen Mittel.

Ein Vergleich des Gesamtstauinhalts aller Talsperren des Abflussjahres 2023 mit der des langjährigen Mittels 1968/2022 in Bild 12 zeigt, dass der Gesamtstauinhalt aller Talsperren im Ruhreinzugsgebiet im Abflussjahr 2023 nur in den ersten zweieinhalb Monaten durchgängig unter und danach bis zum Ende des Abflussjahres durchgängig über dem langjährigen Durchschnitt lag.

Einzelheiten über den Stauinhalt aller Talsperren im Einzugsgebiet und den unbeeinflussten Abfluss während des Abflussjahres 2023 können Bild 12 entnommen werden. Zum besseren Verständnis ist der Hochwasserschutzraum eingezeichnet, der sich summarisch aus den für die Wintermonate in der Henne-, Möhne- und Biggetalsperre vorgeschriebenen Hochwasserschutzräumen zusammensetzt. Es ist ersichtlich, dass der Hochwasserschutzraum bzgl. des Gesamtstauinhaltes nicht eingestaut worden ist.

In Bild 13 sind für das Abflussjahr 2023 sowohl die Ganglinien der Talsperreninhalte als auch die Abgaben aus der Möhne-, Henneund Sorpetalsperre, den Talsperren der Nordgruppe, aufgetragen. Bild 14 enthält die entsprechenden Darstellungen der Bigge-, Verse- und Ennepetalsperre, den Talsperren der Südgruppe. Bei diesen Darstellungen wurde bewusst für alle Talsperren der gleiche Maßstab gewählt, damit hieraus sofort die Bedeutung der einzelnen Sperren für das Gesamtsystem zu erkennen ist. Bei Henne-, Möhne- und Biggetalsperre sind zusätzlich die gesetzlich vorgeschriebenen Hochwasserschutzräume eingezeichnet. Im Abflussjahr 2023 musste an der Hennetalsperre bei den Hochwasserereignissen im Januar und Februar die jeweiligen für das Winterhalbjahr vorgeschriebenen Hochwasserschutzräume in Anspruch genommen werden, an der Möhnetalsperre erfolgte dies allenfalls geringfügig. Der Hochwasserschutzraum an der Biggetalsperre wurde bei dem Hochwasserereignis im Januar vorübergehend bis zu gut 40 % eingestaut, bei dem Hochwasserereignis Februar zu einem deutlich geringeren Maße. Nach Hochwasserereignissen wird der in Anspruch genommene Hochwasserschutzraum wieder freigeräumt, besonders deutlich ist dies bei der Biggetalsperre im Januar zu erkennen (siehe Bild 14).

Beim Vergleich der Stauinhaltsganglinien der einzelnen Talsperren im Einzugsgebiet der Ruhr lässt sich übereinstimmend bei allen Talsperren der klassische Verlauf der Stauinhaltsentwicklung, bestehend aus winterlicher Aufstauphase aufgrund ausreichender Niederschläge und sommerlicher Abstauphase aufgrund Einhaltung von vorgeschriebenen Mindestabflüssen, erkennen. Die Abstauphase fiel im Abflussjahr 2023 wegen der niederschlagsbedingt oftmals ausreichend hoher Wasserführung in der Ruhr geringer aus als in den Vorjahren. Erkennbar sind zudem an Henne-, Möhne- und Biggetalsperre die Absenkphase ab August

zum Erreichen der Hochwasserschutzraumgrenze zum 01. November sowie die baubedingten Absenkphasen an Verse- und Sorpetalsperre (siehe Kapitel 6 und 7.2).

Generell gilt, dass Talsperren mit einem ungünstigen Ausbaugrad (Verhältnis von Stauinhalt zu mittlerer langjähriger Zuflusssumme), wie z. B. die Sorpe- und Versetalsperre, bei der Talsperrenabgabe geschont werden.

Im Abflussjahr 2023 waren mit Ausnahme der Listertalsperre, die ein Vorbecken der Biggetalsperre ist, an keiner Talsperre des Ruhrverbands die Hochwasserentlastungsanlage in Betrieb.

9 Hydrologischer und meteorologischer Mess- und Beobachtungsdienst

Am Ende des Abflussjahres 2023 wurden von der Abteilung Wasserwirtschaft 44 eigene Pegelanlagen und 3 Pegelanlagen für Dritte betreut. Davon sind 45 Pegelanlagen mit Datenfernübertragung und 2 Pegelanlagen ohne Datenfernübertragung. An insgesamt 14 Anlagen kommen direkt messende Systeme zur Durchflussermittlung zum Einsatz (3 Ultraschall-Laufzeit, 6 Ultraschall-Doppler, 3 Korrelationsverfahren und 2 Oberflächen-Radar). Im Rahmen des Redundanzkonzeptes werden an den Pegeln 24 redundante Datensammler mit Datenfernübertragung und 24 Gebern verwendet. Außerdem werden 14 Stauhöhenpegel mit Datenerfassung sowie 31 eigene Wetterstationen und 2 Wetterstationen für Dritte beobachtet und gewartet. Die Messtechnik besteht insgesamt aus 7 Messwertansagegeräten, 62 Datensammlern mit Datenfernübertragung und 209 Gebern sowie 6 Datensammlern mit 6 Gebern ohne Datenfernübertragung. Die Datenfernübertragung der Messwerte erfolgt ausschließlich IP-basiert (Internetprotokoll).

Im Berichtszeitraum wurden in der Ruhr und ihren Nebengewässern 314 Durchflussmessungen durchgeführt. Diese Zahl setzt sich aus 31 Sondenmessungen (magnetisch-induktiv), 172 Messungen mit dem Ultraschall-Doppler-Strömungsmessgerät ADCP sowie 50 Messungen des Oberflächenradar RP 30 zusammen. Seit dem Abflussjahr 2023 wird ein neues, mobiles Messgerät (NivuFlow Stick) eingesetzt, welches nach dem Ultraschall-Korrelationsverfahren arbeitet.

In der Summe aller Abflussmessungen sind 21 Durchflussmessungen für andere Abteilungen des Ruhrverbands enthalten sowie zehn Durchflussmessungen, die aus einer Kooperation mit dem Landesamt für Natur, Umwelt und Verbraucherschutz des Landes Nordrhein-Westfalen (LANUV NRW) resultieren und an den Landespegeln Neheim/Ruhr und Oventrop/Ruhr seit Mai 2023 durchgeführt wurden. Unter anderem wurden am Pegel Henrichshütte/ Paasbach und im Zulaufbereich der Kläranlage Bochum-Ölbachtal insgesamt sieben Durchflussmessungen zur Wartung und Überprüfung der vorhandenen Messtechnik bei unterschiedlichen

Abflusssituationen durchgeführt. Des Weiteren erfolgten zwei Messungen zur Überprüfung der Dränage des Stausees Ahausen, am Pegel Lohmann kam zwei Mal ADCP-Messtechnik zum Einsatz. Während einer Begehung mit Fachbehörden im Zusammenhang mit der Neuerstellung des Bewirtschaftungsplans der Ennepetalsperre fanden an verschiedenen Querschnitten der Ennepe in FFH-Gebieten unterhalb der Talsperre insgesamt sieben Abflussmessungen sowie Profilaufnahmen statt.

Zusätzlich wurden zur Ermittlung der Fließgeschwindigkeitsverteilungen und zur Überprüfung der Anlagenkennlinien in den Zulaufbereichen an den Wasserkraftanlagen in Ahausen sechzig und in Essen-Kettwig vier Messungen durchgeführt.

Auch im Abflussjahr 2023 erfolgten an einer Vielzahl von Messstationen im Ruhreinzugsgebiet Niedrigwassermessungen. Während der beiden Hochwasserereignisse im Februar wurden insgesamt 31 Abflussmessungen durchgeführt. Mit Hilfe dieser wertvollen, weil selten vorkommenden, Abflussmessungen konnten Abflusskurven erfolgreich angepasst werden. Die Kalibrierung der stationären Durchflussmessanlagen ohne vorhandene Wasserstands-Abflussbeziehung an der unteren Ruhr wurde fortgesetzt. Zur Errichtung eines neuen Pegelstandortes an der Röhr unterhalb der Sorpetalsperre in Sundern-Reigern erfolgten Voruntersuchungen. Die stationäre Sickerwassermessung im Bereich des Sportvereins ETUF am Baldeneysee in Essen wurde, ähnlich wie die Dränage-Messung am Ahauser Stausee, zwei Mal in einem Intervall von sechs Monaten überprüft.

Im Übrigen dienten die Durchflussmessungen der Kalibrierung und Kontrolle der Pegelanlagen, da nur so gewährleistet werden kann, dass immer zuverlässige Abflussdaten für die Steuerung des Talsperren- und Stauseensystems zur Verfügung stehen.

Wie im vorangegangenen Abflussjahr war die Durchführung von Schneemessungen nicht erforderlich. Generell erfolgen Schneemessungen zur Ermittlung des im Schnee zwischengespeicherten Wasservolumens und sind für die operationelle Steuerung des Talsperrensystems im Rahmen der Bewirtschaftung der Hochwasserschutzräume von besonderer Bedeutung.

Tabellenanhang

Meteorologische Daten amtlicher Wetterstationen

				Lufttempe	ratur °C in	2 m Höhe				Ar	zahl der Ta	ige		Sonnenschein		
Stationsname Höhenlage	Monat	Mittel 2023	Mittel 1991/ 2020	Abwei- chung	Höchst- wert	Datum	Tiefst- wert	Datum	Sommer- tage Max. ≥ 25 °C	heiße Tage Max. ≥ 30°C	Frost- tage Min. < 0 °C	Eis- tage Max. < 0 °C	Nieder- schlag ≥ 0,1 mm	Gesamt- dauer in Std.	in % des Normal- wertes	
Kahler Asten 839 m ü. NN	Nov. Dez. Jan.	4,3 -0,8 -0,1	2,0 -0,8 -1,9	2,3 0,0 1,8	15,3 11,2 10,2	13. 31. 01.	-7,2 -8,5 -8,9	19. 13. 26.	0 0 0	0 0 0	8 22 18	1 17 14	19 23 24	51 38 14	116 100 30	
	Febr. März April	0,7 1,6 3,6	-1,5 1,2 5,4	2,2 0,4 -1,8	10,7 11,7 15,9	14. 18. 22.	-7,5 -6,6 -5,7	09. 01. 04.	0 0	0 0	15 18 9	6 5	14 26 16	94 72 162	140 64 94	
	Winter	1,6	0,7	0,8	15,9	22.04.	-8,9	26.01.	0	0	90	43	122	431	93	
	Mai Juni Juli	9,4 15,5 14,2	9,3 12,2 14,3	0,1 3,3 -0,1	20,2 24,2 28,2	22. 25. 09.	-0,5 3,1 6,8	03. 02. 26.	0 0 3	0 0 0	10 0 0	0 0 0	14 11 21	215 304 187	119 169 99	
	Aug. Sept. Okt.	14,3 14,9 8,7	14,1 10,5 6,2	0,2 4,4 2,5	24,7 25,3 21,2	19. 11. 02.	6,9 6,4 0,1	31. 23. 15.	0 2 0	0 0	0 0 0	0 0	20 k.A. 23	172 227 79	89 175 89	
Abflussjahr:	Sommer Sommer	12,8	11,1	1,7	28,2	09.07.	-0,5	03.05.	5	0	1	0	89	1.184	125	
2023	Jahr	7,2	5,9	1,3	28,2	09.07.	-8,9	26.01.	5	0	91	43	211	1.615	115	
Lüdenscheid 387 m ü. NN	Nov. Dez. Jan.	7,5 2,1 2,9	5,0 2,0 1,2	2,5 0,1 1,7	18,0 14,9 13,7	13. 31. 01.	-2,6 -10,2 -7,0	19. 17. 29.	0 0 0	0 0 0	2 16 14	0 8 6	18 22 26	74 38 12	135 93 23	
	Febr. März	3,8 5,0	1,7 4,5	2,1 0,5	13,8 14,8	14./22. 18.	-4,9 -6,8	27./28.	0	0	10 12	0	13 22	88 79	121 66	
	April Winter	6,9 4.7	8,4 3,8	-1,5 0,9	19,9 19,9	22.	-3,5 -10,2	17.12.	0	0	7 61	14	18 119	155 446	90	
	Mai Juni	12,2 18,4	12,2 15,1	0,0 3,3 0,1	23,3 28,7 32,5	22. 25. 09.	-0,1 6,4 8,2	03. 03. 25.	0 13 5	0 0 3	1 0 0	0 0	13 7 21	213 278 184	114 150 96	
	Juli Aug. Sept.	17,1 16,5 17,2	17,0 16,7 13,1 9,2	-0,2 4,1 2,6	28,0 29,0	19. 07. 02.	8,4 5,9 0.7	31. 15. 16.	6 7 0	0 0	0 0 0	0 0	19 k.A. 20	151 229 85	81 162	
Abflussjahr:	Okt. Sommer	11,8 15,5	13,9	1,7	24,0 32,5	09.07.	-0,1	03.05.	31	3	1	0	80	1.140	82 115	
2023	Jahr	10,1	8,8	1,3	32,5	09.07.	-10,2	17.12.	31	3	62	14	199	1.586	107	
Essen 152 m ü. NN	Nov. Dez. Jan.	9,0 3,7 4,8	6,7 3,7 2,9	2,3 0,0 1,9	19,2 16,8 16,2	13. 31. 01.	-2,3 -7,2 -3,6	19. 16. 21.	0 0 0	0 0 0	2 11 10	0 3 1	20 18 24	97 42 25	159 93 45	
	Febr. März April	5,6 6,7 8,8	3,4 6,4 10,2	2,2 0,3 -1,4	14,5 16,4 20,5	13. 18. 22.	-2,9 -2,8 -0,7	27. 01. 05.	0 0 0	0 0 0	7 7 2	0 0 0	13 24 16	98 89 162	134 71 94	
	Winter	6,4	5,6	0,9	20,5	22.04.	-7,2	16.12.	0	0	39	4	115	513	103	
	Mai Juni Juli	14,0 20,2 18,6	13,8 16,6 18,7	0,2 3,6 0,1	24,2 30,2 33,5	22. 20. 09.	3,2 9,4 11,3	03. 02. 06.	0 16 7	0 2 3	1 0 0	0 0 0	14 8 22	215 316 209	119 158 100	
	Aug. Sept. Okt.	18,0 18,9 13,3	18,4 14,9 10,8	-0,4 4,0 2,5	28,3 30,6 24,4	11./18. 10. 02.	10,7 9,5 2,7	31. 24. 16.	9 11 0	0 1 0	0 0 0	0 0	20 9 21	172 230 104	89 156 95	
Abflussjahr: 2023	Sommer Jahr	17,2 11,8	15,5 10,5	1,7 1,3	33,5 33,5	09.07. 09.07.	2,7 2,7 -7.2	16.10. 16.12.	43	6	1 40	0 4	94	1.246 1.759	120 115	

Entnahme und Entziehung im Einzugsgebiet der Ruhr

Entnahmen	oberhalb	Villig	ıst
-----------	----------	--------	-----

Abflussjahr 2023

	Nov.	Dez.	Jan.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Jahr
je Monat (in 1.000 m³)	11.588	11.762	11.871	10.851	11.568	11.828	13.082	14.087	12.873	11.973	11.066	12.167	144.716
je Tag (in 1.000 m³)	386	379	383	388	373	394	422	470	415	386	369	392	396
(in m³/s)	4,47	4,39	4,43	4,49	4,32	4,56	4,88	5,43	4,81	4,47	4,27	4,54	4,59

Entziehung oberhalb Villigst

je Monat (in 1.000 m³)	7.659	7.921	7.893	7.362	8.086	7.783	8.426	9.182	8.255	8.206	7.983	8.050	96.806
je Tag (in 1.000 m³)	255	256	255	263	261	259	272	306	266	265	266	260	265
(in m³/s)	2,96	2,96	2,95	3,04	3,02	3,00	3,15	3,54	3,08	3,06	3,08	3,01	3,07

Entnahmen oberhalb Hattingen

je Monat (in 1.000 m³)	21.832	28.799	27.490	25.878	23.650	19.087	20.700	28.349	27.577	25.679	27.350	23.998	300.389
je Tag (in 1.000 m³)	728	929	887	924	763	636	668	945	890	828	912	774	823
(in m³/s)	8,42	10,75	10,26	10,70	8,83	7,36	7,73	10,94	10,30	9,59	10,55	8,96	9,53

Entnahmen unterhalb Hattingen

je Monat (in 1.000 m³)	6.959	7.116	7.177	6.497	6.872	6.942	7.427	8.218	7.216	7.316	7.203	7.059	86.002
je Tag (in 1.000 m³)	232	230	232	232	222	231	240	274	233	236	240	228	236
(in m³/s)	2,68	2,66	2,68	2,69	2,57	2,68	2,77	3,17	2,69	2,73	2,78	2,64	2,73

Entziehung oberhalb Hattingen

je Monat (in 1.000 m³)	10.076	10.438	10.679	9.888	11.259	10.399	11.186	12.147	11.115	11.082	10.742	10.776	129.787
je Tag (in 1.000 m³)	336	337	344	353	363	347	361	405	359	357	358	348	356
(in m³/s)	3,89	3,90	3,99	4,09	4,20	4,01	4,18	4,69	4,15	4,14	4,14	4,02	4,12

Gesamt-Entnahme

je Monat (in 1.000 m³)	28.792	35.915	34.667	32.376	30.522	26.028	28.127	36.567	34.792	32.995	34.553	31.057	386.391
je Tag (in 1.000 m³)	960	1.159	1.118	1.156	985	868	907	1.219	1.122	1.064	1.152	1.002	1.059
(in m³/s)	11,11	13,41	12,94	13,38	11,40	10,04	10,50	14,11	12,99	12,32	13,33	11,60	12,25

Gesamt-Entziehung

je Monat (in 1.000 m³)	15.168	15.610	15.888	14.569	16.063	15.430	16.609	18.174	16.315	16.370	15.992	15.892	192.080
je Tag (in 1.000 m³)	506	504	513	520	518	514	536	606	526	528	533	513	526
(in m³/s)	5,85	5,83	5,93	6,02	6,00	5,95	6,20	7,01	6,09	6,11	6,17	5,93	6,09
gerundeter Wert (in m³/s)	5,9	5,8	5,9	6,0	6,0	6,0	6,2	7,0	6,1	6,1	6,2	5,9	6,1

Stauinhaltsänderungen der Talsperren – Tageswerte in 1.000 m³

November 2022 Schwarze Zahlen: Zuschuss – Rote Zahlen: Aufstau +

Tage Talsperren	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.
Bigge	53	103	103	216	89	25	372	377	25	302	187	177	25	226	212	113	508	373	636	952	1564	1212	931	734	349	628	576	447	322	180	
Möhne	202	191	237	165	248	207	228	279	193	222	236	210	333	246	236	218	187	30	147	39	68	5	80	75	38	55	10	11	103	125	
Sorpe	22	3	3	27	22	2	20	2	3	3	22	2	22	2	2	3	52	26	22	52	33	30	14	38	12	13	35	62	37	22	
Henne	13	-	27	14	14	13	41	54	41	40	55	40	55	27	41	54	41	27	68	14	27	14	27	13	27	28	27	41	40	27	
Verse	14	43	28	28	29	28	28	29	28	14	28	29	28	14	28	-	14	-	-	28	42	29	28	28	15	-	-	-	-	15	
Ennepe	18	25	6	18	25	25	18	25	12	19	24	22	22	27	17	-	33	22	28	85	154	130	92	68	62	53	37	36	27	26	
Öster	10	-	10	-	-	-	-	-	1	-	-	-	-	-	-	-	10	55	55	280	220	30	10	10	35	35	30	10	40	10	
Glör	2	2	-	2	1	3	2	3	2	2	3	2	3	2	2	-	5	2	2	8	9	9	8	11	21	3	7	8	12	5	
Jubach	-	1	-	1	1	1	2	-	-	1	1	2	2	1	1	6	7	11	8	18	24	4	9	11	3	-	1	6	3	2	
Hasper	5	6	3	5	5	3	6	4	5	5	5	5	4	6	5	-	1	2	-	4	8	6	6	3	4	1	1	3	2	-	
Fürwigge	2	3	1	2	4	3	4	4	6	4	5	5	5	6	2	2	4	8	8	15	25	23	14	10	9	5	5	4	3	-	
Fülbecke	3	1	-	-	-	3	1	1	1	1	-	-	3	1	1	-	3	-	-	3	3	2	2	1	-	-	3	1	1	-	
Ahausen	20	54	41	53	305	117	222	267	156	158	18	19	152	23	208	40	89	99	88	51	26	56	106	9	245	74	156	51	23	21	
Summe	173	318	298	341	538	350	500	507	414	448	548	471	604	530	332	192	317	537	411	1369	1576	1430	937	988	815	741	559	557	539	403	
Summe NG	211	188	207	124	256	192	289	331	231	259	313	248	410	271	275	269	176	31	237	27	8	49	39	126	77	96	72	10	106	174	

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

Dezember 2022

Bigge	103	74	74	231	74	187	36	73	179	31	284	31	179	178	60	371	80	96	29	125	348	1133	2390 2	2246	2067	2616	1921	1315	615	405	61
Möhne	5	11	78	29	25	94	107	242	176	159	103	109	125	33	61	41	127	193	113	32	95	255	720	972	906	1036	772	711	544	433	406
Sorpe	17	5	5	30	30	6	4	30	5	5	5	54	5	20	5	-	9	6	30	20	30	103	128	174	223	366	294	245	174	174	173
Henne	14	27	27	28	40	27	28	27	13	55	27	-	41	13	-	27	14	68	27	13	55	122	177	203	292	355	341	310	251	221	220
Verse	28	28	29	14	28	28	14	29	28	14	28	29	28	13	27	40	27	26	27	13		80	135	114	127	127	128	99	84	99	100
Ennepe	16	15	11	10	11	15	11	21	21	26	21	21	10	11	-	-	-	6	6	10	26	125	299	312	278	374	321	281	259	245	256
Öster	15	-	10	10	10	10	-	15	-	10	-	10	-	10	-	-	-	-	15	-	-	20	55	180	135	45	20	-	10	-	-
Glör	2	2	2	2	5	-	-	8	10	3	5	9	2	1	1	-	-	-		5	3	16	36	40	22	67	26	29	58	5	52
Jubach	-	1	-	1	1	-	1	-	-	1	2	1	-	-	1	1	-	-	2	1	4	21	16	1	-	-	-	6	1	1	-
Hasper	-	-	-	1	2	-	2	6	7	7	7	3	1	1	-	2	3	3	1	-	1	10	22	35	38	50	38	33	27	26	32
Fürwigge	-	2	1	3	1	2	3	-	1	-	1	1	2	1	3	4	3	4	3	2	3	41	53	44	34	42	40	20	15	19	21
Fülbecke	-	-	-	-	-	-	-	1	-	-	2	-	1	1	-	-	-	1	-	1	2	-	-	-	-	70	17	12	11	-	-
Ahausen	51	35	17	164	21	210	36	21	41	23	179	1	51	24	46	265	160	164	53	33	49	243	36	38	59	36	38	23	49	15	104
Summe	191	115	-	101	136	145	136	415	341	244	249	127	283	238	100	165	217	227	44	117	617	2169	3994	4281	4063	5184	3879	3026	1978	1611	1425
Summe NG	36	21	46	29	95	127	139	299	194	219	135	163	171	26	56	14	104	119	56	25	180	480	1025	1349	1421	1757	1407	1266	969	828	799

 $NG = Nordgruppe \ (M\"{o}hne-, Sorpe-, Hennetalsperre)$

Januar 2023

Bigge	31	140	264	242	500	692	346	524	366	1689	552	7692	1201	2210	2030	764	1015	2072	2063	2256	2/15	26/1	5	55	147	163	170	233	97	60	359
Möhne	337	267	331	272	216	411	333	_	365	1111		1252		_		1373				600	555	460	352	367	351	383	271		304	E27	707
	_			110	154					250				771			_		_	212	122				75	125	121	100	-	70	
Sorpe	126	173	149		154	159	100		319	259	366			//1	667	610	515	350	269	212	132	104	103	75	75	125	131	102	130	78	-
Henne	191	191	191	220	222	268	268	300	332	362	490	853	1077	893	775	421	84	51	67	169	152	202	-	-	-	34	17	50	33	17	17
Verse	84	71	71	94	93	129	108	123	108	139	231	787	715	482	359	191	112	64	48	31	-	16	16	31	16	16	32	16	32	16	-
Ennepe	239	183	150	182	205	167	124	142	169	98	27	974	122	178	169	178	47	54	18	-[18	45	9	-	-	9	9	8	9	- [9
Öster	-	10	-	-	-	-	-	-	10	-	-	-	-	-	-	10	-	-	-	-	-	10	10	10	10	-	25	20	15	10	15
Glör	32	61	8	12	3	1	9	6	28	35	9	118	5	61	60	18	19	25	29	-	6	11	7	5	7	1	11	12	14	21	7
Jubach	3	8	14	1	2	12	1	8	-	6	8	31	20	-	9	4	19	-	7	3	1	2	4	-	-	-	-	2	4	1	2
Hasper	36	25	18	20	27	27	24	20	18	23	58	243	12	7	10	3	4	-	2	1	1	5	1	6	7	3	5	6	7	6	3
Fürwigge	16	9	7	14	12	8	5	2	3	15	10	98	148	27	63	17	12	5	-	5	7	8	3	2	3	3	3	4	4	4	-
Fülbecke	12	1	-	1	1	-	-	1	-	1	1	3	-	-	3	1	-	1	1	-	-	1	-	1	1	1	-	-	4	1	-
Ahausen	49	5	56	117	25	163	30	98	115	74	145	83	238	169	43	39	73	119	109	92	51	34	74	-	40	44	87	75	223	114	56
Summe	1150	1116	1118	1422	1560	1709	1356	1491	1833	562	1338	13121	8581	5813	5318	1718	16	1439	1032	1677	1952	2293	358	443	274	390	339	174	261	598	1093
Summe NG	654	631	671	741	692	838	787	794	1016	1032	1420	3093	3862	3211	3160	2404	1899	1275	1054	643	535	362	455	442	426	542	485	400	467	442	798

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

Februar 2023

Bigge	1042	3641	2827	688	104	600	300	201	438	348	469	226	24	25	90	102	128	402	955	624	873	512	431	487	443	296	180	190		
Möhne	872	2655	3291	2100	1816	939	522	58	66	86	13	68	147	186	283	270	258	33	918	693	676	78	116	250	256	112	48	46		
Sorpe	313	1137	967	590	577	460	371	323	99	88	20	29	92	93	92	14	35	54	80	46	126	95	70	-	29	7	25	35		
Henne	50	775	953	447	215	54	143	233	1	54	18	18	54	71	72	35	54	18	89	90	89	72	71	90	89	36	89	72		
Verse	64	351	287	175	141	30	15	30	30	30	16	48	32	32	47	48	32	16	-	-	-	-	-	16	16	16	16	-		
Ennepe	35	362	235	-	57	57	56	19	19	-	19	19	38	56	47	56	56	-	37	57	28	10	18	19	38	47	19	28		
Öster	10	-	25	35	25	20	20	-	10	1	10	10	10	-	15	-	10	10	15	10	15	10	-	25	10	10	10	10		
Glör	16	8	57	11	1	4	6	-	14	10	8	9	11	13	14	23	18	6	18	11	3	5	1	5	14	9	3	4		
Jubach	17	19	19	10	2	1	-	2	2	-	2	7	3	3	2	3	1	7	10	2	1	2	6	3	4	1	1			
Hasper	21	37	5	6	2	-	ī	-	1	2	5	5	7	8	10	7	7	5	3	3	1	-	2	1	3	1	3	4		
Fürwigge	7	56	14	19	27	3	4	2	5	-	-	2	3	3	5	5	3	2	9	15	4	-	4	7	6	7	-	-		
Fülbecke	11	2	-	-	2		-	1	-	-		1	1	1	1	1	-	-	2	1	1	1	1	-	-	3	1	1		
Ahausen	87	56	26	103	15	112	161	61	87	36	176	39	126	39	54	38	95	18	39	116	103	64	58	112	66	3	83	33		
Summe	2250	8987	8606	4114	2807	1938	1312	394	478	570	284	29	112	288	437	491	506	359	2058	1616	1674	667	600	869	801	353	420	324		
Summe NG	1135	4567	5211	3137	2608	1345	750	148	165	228	51	57	109	164	263	291	347	3	1087	829	891	245	257	340	374	141	162	83		

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

Stauinhaltsänderungen der Talsperren – Tageswerte in 1.000 m³

März 2023 Schwarze Zahlen: Zuschuss – Rote Zahlen: Aufstau +

Tage Talsperren	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.
Bigge	346	313	208	254	196	192	65	680	713	4563	2050	761	119	300	105	176	434	139	369	279	193	595	673	540	82	1238	1080	262	289	313	610
Möhne	379	536	387	215	297	308	136	83	333	1041	425	86	94	80	175	390	168	241	346	123	34	24	100	221	183	830	560	213	45	84	207
Sorpe	36	33	8	30	12	6	143	131	36	299	48	95	138	79	52	17	11	71	137	35	138	138	105	127	72	120	228	105	115	57	20
Henne	89	54	53	18	36	18	54	143	71	483	214	18	54	36	18	36	71	-	36	36	36	1	90	107	36	72	232	215	71	36	161
Verse	16	16	16	16	16	-	32	47	95	444	275	65	49	32	33	75	15	30	31	45	45	46	16	32	-	79	60	30	-	15	46
Ennepe	10	9	-	9	10	28	-	281	47	675	75	366	84	19	18	37	47	19	10	37	188	195	213	186	89	107	230	124	53	36	142
Öster	10	-	10	25	20	25	20	15	15	20	70	85	70	65	10	10	-	-	-	-	10	-	-	10	-	10	-	10	-	10	-
Glör	4	3	1	2	13	6	6	16	28	114	10	51	3	46	22	2	6	15	13	46	26	13	28	9	8	57	25	13	3	12	17
Jubach	-	2	4	6	1	-	2	2	44	3	8	1	1	-	1	1	1	1	-	2	8	-	3	1	4	17	2	4	12	17	4
Hasper	3	7	7	10	4	7	3	4	44	83	5	3	3	3	3	-	2	-	1	-	1	1	1	-	3	6	3	3	3	-	6
Fürwigge	2	2	1	2	3	-	-	8	21	54	41	66	-	21	19	10	1	1	7	8	8	9	7	6	5	28	25	10	2	-	16
Fülbecke	1	1	-	-	4	1	1	3	7		-	3	-	-	-	-	-	-	1		-	1	-	-	-	2	-	1	-	-	-
Ahausen	121	44	35	16	17	128	24	47	325	90	123	56	69	64	10	123	269	136	130	28	82	15	38	59	123	33	41	26	48	122	94
Summe	643	810	583	375	430	318	212	1352	1543	7682	2820	1357	110	523	161	781	249	584	1081	567	696	958	1265	1142	23	2598	2394	922	63	199	1127
Summe NG	432	557	448	203	321	320	61	357	298	1823	687	199	10	37	245	371	108	312	519	122	136	114	295	455	75	1022	1020	533	231	9	388

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

April 2023

Bigge	3538	2567	758	815	857	869	512	127	249	180	327	23	271	245	240	289	119	16	32	5	93	218	39	255	109	76	38	217	320	208
Möhne	720	714	13	259	145	499	249	605	377	132	68	81	470	30	166	77	155	121	124	148	153	117	96	154	35	24	164	216	135	105
Sorpe	161	244	53	209	265	22	11	69	70	152	85	112	109	17	27	3	9	9	20	45	12	25	19	13	28	31	-	92	62	33
Henne	268	359	353	167	74	37	19	56	74	74	93	75	55	18	19	37	56	74	37	74	56	37	37	19	37	-	19	93	55	56
Verse	266	245	33	130	197	16	16	16	-	15	-	-	-	30	15	30	-	15	30	15	15	16	15	15	-	-	-	16	-	-
Ennepe	929	130	242	385	449	45	81	85	65	38	9	28	-	10	-	19	-	-	28	10	18	29	37	28	9	-	10	10	10	18
Öster	-	-	10	-	-	10	-	-	-	10	-	10	-	-	-	10	-	-	10	-	10	10	15	10	10	15	10	-	25	25
Glör	138	17	39	12	2	2	2	2	2	4	8	12	4	7	8	9	1	11	17	16	15	19	18	16	14	19	19	18	19	21
Jubach	44	8	14	1	10	7	2	1	4	9	6	4	3	3	-	4	7	7	7	1	6	2	4	2	6	8	2	2	6	2
Hasper	10	7	6	2	-	-	-	-	-	1	-	-	1	3	-	3	-	-	3	3	1	-	1	1	-	-	1	1	-	1
Fürwigge	97	4	45	14	6	4	-	4	1	1	4	-	-	-	2	5	1	2	-	-	2	-	1	1	-	2	2	1	-	1
Fülbecke	-	2	1	1	1	-		-	-	1	1	1		-	-	1	1	1	1	-	-	-	1	-	1	1	-	-	-	-
Ahausen	258	43	353	445	23	99	20	180	33	99	5	13	36	184	238	-	79	13	63	20	204	235	31	60	130	53	5	80	44	56
Summe	6429	4217	428	1192	1835	1478				600	577	278	871	22	189	247	171	153	36	283	243	36	28	518	311	97	181	706	468	282
Summe NG	1149	1317	393	301	336	440	241	730	521	358	246	268	634	65	212	117	220	204	141	267	197	129	114	186	100	7	183	401	252	194

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

Mai 2023

Bigge	87	103	97	93	54	28	462	227	641	749	121	584	921	1037	799	24	110	31	122	57	101	16	12	136	70	16	88	32	33	207	48
Möhne	48	57	80	14	149	29	65	354	9	261	375	627	799	1451	59	18	98	7	6	66	7	208	73	109	4	25	56	75	95	10	17
Sorpe	78	67	35	34	64	91	62	11	100	67	134	86	99	148	32	79	20	78	22	11	15	441	51	35	57	88	115	173	155	155	157
Henne	56	56	55	38			38	93	55	18	56	37	37	75	-	18	18	38	18	-	-	56	18	-	19	-	19	18	19	18	19
Verse	-	16	15	15	-	15	15	15	61	90	61	66	49	33	-	50	65	49	60	60	61	60	62	48	48	47	64	48	64	48	64
Ennepe	19	-	-	10	19	9	-	28	47	46	19	19	9	-	9	-	9	10	28	28	28	38	47	17	18	18	18	27	26	27	27
Öster	20	20	10	10	-	10	15	10	10	-	10	-	-	-	-	10	-	-	35	10	15	10	15	10	10	20	25	20	20	25	-
Glör	21	20	22	23	18	9	2	2	13	13	19	17	14	11	12	6	13	20	21	23	22	5	1	2	1	1	3	2	4	2	5
Jubach	-	2	2	2	3	4	4	13	13	13	13	4	4	3	8	3	6	7	-	-	1	2	3	1	-	2	-	2	1	2	2
Hasper	3	2	1	4	-	2	1	4	11	8	-	1	-	-	-	1	5	2	6	4	8	8	7	9	12	9	11	11	14	13	12
Fürwigge	4	-	-	-	2		2	3	3	29	2	15	21	25	7	8	5	4	3	3	-	2	2	-	1	2	2	3	2	3	3
Fülbecke	5	2	2	3	-	-	7	3	3	5	8	-	-	10	-	1	-	2	-	-	7	2	3	3	3	-	-	-	16	-	1
Ahausen	54	56	59	33	118	79	444	116	43	300	151	72	67	164	189	113	39	160	30	56	33	138	59	10	23	73	76	160	177	177	56
Summe	143	276	79	84	155	30	98	323	776	1000	922	1325	1733	2849	699	15	203	248	21	67	189	703	96	139	175	251	477	507	559	314	265
Summe NG	182	180	170	86	213	62	41	250	36	346	565	750	935	1674	91	79	136	47	34	55	22	705	4	74	34	63	190	266	269	163	159

 $NG = Nordgruppe \ (M\"{o}hne-, \ Sorpe-, \ Hennetalsperre)$

Juni 2023

Dinna	20	4.4	4.4	1.0	220	10	100	1.00	11	210	42		204	205	204	275	277	204	204	215	400	110	175	270	270	210	202	270	0.7	0.0
Bigge	28	44	44	16	239	48	108	160	- 11	219	42	-	294	385	294	375	211	294	294	315	498		175	278	279	219	293	278	87	86
Möhne	44	43	11	43	85	43	186	9	16	24	27	122	185	107	161	173	170	162	187	43	533	514	1572	168	25	-	63	152	58	34
Sorpe	160	171	144	239	140	113	178	192	168	168	241	298	291	280	293	246	268	341	287	271	274	11	137	217	269	165	103	17	171	93
Henne	37	37	56	37	19	18	19	18	19	-	-	18	-	18	-	56	37	56	56	56	260	74	111	75	55	37	19	56	37	37
Verse	63	64	64	48	64	63	48	32	48	64	64	63	80	64	60	59	73	59	60	62	94	-	62	62	62	62	63	62	46	78
Ennepe	26	36	44	35	36	26	36	18	35	36	44	35	45	44	44	45	44	44	44	39	127	86	24	32	31	40	32	39	24	31
Öster	10	-	10	-	15	-	10	10	-	10	-	10	15	10	10	-	10	10	10	10	10	10	-	-	-	10	-	-	-	-
Glör	2	3	5	4	4	4	3	4	4	5	5	4	5	5	5	5	4	5	5	5	5	5	5	4	4	6	5	5	4	5
Jubach	2	3	8	13	3	3	2	3	2	4	1	3	2	4	3	3	8	-	3	1	2	ω	3	2	3	2	3	2	3	3
Hasper	14	12	14	15	12	15	12	14	13	13	13	18	15	13	1	6	2	4	9	8	10	5	5	6	8	6	6	4	3	4
Fürwigge	4	3	4	3	5	3	4	1	4	3	5	4	4	5	3	5	5	5	3	3	3	7	5	3	3	3	5	3	2	3
Fülbecke	-	-	-	1	-	-	-	-	-	-	1	1	-	1	1	-	-	1	1	1	-	1	-	-	2	1	1	-	-	-
Ahausen	36	23	40	41	143	44	94	150	33	41	138	-	7	74	18	56	33	28	44	5	30	112	38	16	18	-	5	5	33	67
Summe	427	353	428	462	441	259	74	268	283	506	527	540	944	862	893	918	930	1010	1003	707	1846	571	1228	714	645	477	560	173	278	299
Summe NG	241	165	211	319	206	52	27	183	133	192	214	402	476	405	454	475	475	559	530	258	1067	429	1546	310	239	128	147	225	76	22

Stauinhaltsänderungen der Talsperren – Tageswerte in 1.000 m³

Juli 2023 Schwarze Zahlen: Zuschuss – Rote Zahlen: Aufstau +

Tage Talsperren	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.
Bigge	219	220	294	91	44	411	353	291	215	274	288	346	404	477	158	404	361	404	462	461	404	462	389	269	283	227	311	69	52	246	314
Möhne	68	102	154	84	93	171	61	147	272	116	320	300	171	258	224	297	350	322	543	260	236	354	550	147	245	210	190	47	232	47	380
Sorpe	76	119	107	63	141	98	102	100	114	116	28	2	22	4	23	1	25	22	5	4	24	4	27	33	6	4	39	43	57	110	22
Henne	37	-	-	37	56	19	37	56	37	112	93	130	111	112	111	130	128	125	107	107	108	89	125	89	108	107	54	35	54	36	
Verse	47	62	78	46	63	62	62	62	62	62	58	58	74	58	46	77	62	77	62	61	47	61	62	46	77	46	-	47	61	62	15
Ennepe	24	40	31	24	39	32	47	32	32	32	40	32	40	40	32	40	40	31	40	40	40	40	32	16	32	32	32	8	-	-	88
Oster	15	10	10	10	-	10	-	15	10	10	10	-	10	-	10	10	10	10	10	10	-	10	-	-	10	-	-	30	20	20	20
Glör	5	5	5	4	5	5	5	7	5	2	2	-	2	1	1	1	2	1	1	-	2	1	1	-	-	-	7	3	2	2	10
Jubach	2	3	4	3	2	3	3	4	4	2	3	4	4	2	2	1	3	3	2	2	2	2	1	1	1	1	7	12	9	7	28
Hasper	3	4	5	1	5	4	4	5	3	4	5	4	4	4	4	5	5	5	2	7	4	5	3	-	7	4	2	-	-	4	12
Fürwigge	2	4	4	1	5	3	3	4	3	3	2	4	4	3	3	5	3	3	3	5	2	3	2	3	3	2	5	7	3	3	14
Fülbecke	-	3	-	1	2	1	-	-	8	3	-	1	1	-	-	1	-	1	1	1	-	-	2	1	-	-	1	-	-	3	4
Ahausen	126	20	21	18	82	5	140	28	43	13	138	69	51	120	118	51	7	59	8	95	95	36	33	26	33	90	35	15	28	48	66
Summe	298	552	671	125	421	774	537	751	808	722		808		831	731	920	996	1064			774		1159		727	713	505	67	14		943
Summe NG	107	221	261	110	178	250	200	303	423	344	385	428	304	366	358	426	503	469	645	363	368	439	702	203	347	313	175	31	121	99	402

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

August 2023

Bigge	486	138	917	221	149	680	753	540	316	559	702	446	745	186	977	153	301	158	173	417	445	300	146	388	186	428	185	161	298	5	170
Möhne	837	16	2	55	51	931	1296	942	616	47	183	128	589	34	311	142	8	91	241	357	382	182	326	219	203	148	164	355	271	90	15
Sorpe	42	14	9	1	3	106	66	40	12	76	40	60	114	11	10	50	51	-	7	71	39	66	64	67	7	51	71	93	64	8	67
Henne	54	53	72	125	90	268	161	143	71	-	89	107	197		53	18	18	-	36	71	89	90	125	107	36	72	89	107	90	35	90
Verse	15	46	46	31	62	92	216	170	77	15	31	16	16	15	-	15	-	31	46	62	77	77	61	78	77	77	77	92	77	62	77
Ennepe	8	56	104	71	16	128	341	206	95	31	8	8	47	-	16	-	8	16	24	31	48	39	48	47	8	32	31	16	16	16	8
Öster	20	10	15	135	100	80	100	70	30	10	55	60	55	10	10	-	10	10	20	25	10	10	-	15	10	25	35	30	20	-	10
Glör	7	14	25	17	10	14	36	32	22	16	12	12	6	9	6	5	7	6	5	6	4	2	4	2	6	2	2	2	-	-	1
Jubach	40	20	18	2	4	20	4	22	6	9	6	6	2	6	1	13	9	6	3	2	1	-	1	2	17	1	1	2	1	2	1
Hasper	10	11	28	19	10	15	46	31	21	17	9	17	7	7	4	6	4	2	-	-	2	4	1	3	4	2	2	2	3	1	1
Fürwigge	29	15	22	21	13	25	58	-	20	11	13	15	18	13	8	3	12	3	6	10	2	-	-	5	3	8	7	3	6	5	10
Fülbecke	3	5	7	-	-	19	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
Ahausen	56	129	157	184	17	75	155	100	101	259	277	40	83	116	171	92	43	59	222	163	13	60	121	51	105	163	40	134	25	136	210
Summe	1410	498	1104	876	188	2303	3249	2052	501	854	656	625	1573	296	1225	365	309	236	767	873	1072	706	897	984	362	683	704	997	873	40	660
Summe NG	849	55	79	179	138	1305	1523	1125	699	123	312	295	900	23	374	110	41	91	284	499	510	338	515	393	160	271	324	555	425	133	172

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

September 2023

Bigge	56	41	89	404	227	372	430	469	639	639 6	531	344	137	294	222	477	571	232	278	405	311	81	157	324	263	294	351	476	7	301	
Möhne	135	272	478	292	238	212	401	269	346	436 2	271	132	157	91	260	215	232	286	366	265	347	225	280	391	224	399	243	264	300	272	
Sorpe	24	33	70	85	28	85	50	57	106	56	15	351	47	14	8	34	38	47	60	58	33	56	84	68	85	84	67	105	57	84	
Henne	71	72	71	90	89	72	107	89	72	36	53	-	35	18	18	-	53	36	18	36	36	53	72	71	90	53	72	89	36	89	
Verse	31	62	61	71	53	67	67	70	70	85	71	14	57	56	71	57	70	57	85	70	43	71	70	85	14	57	53	54	40	53	
Ennepe	95	95	63	39	24	8	-	-	16	16	15	-	8	16	24	24	15	16	24	32	8	15	16	24	24	31	32	32	23	32	
Öster	-	15	20	10	25	10	15	-	10	15	10	10	10	10	17	38	25	20	10	15	10	-	-	-	-	-	-	-	-	10	
Glör	15	13	9	6	4	-	2	2	13	19	21	16	21	17	16	16	16	4	4	5	2	2	3	5	4	4	4	4	4	4	
Jubach	9	4	1	1	1	1	-	1	-	1	2	2	-	2	2	2	2	1	1	2	3	1	-	1	-	1	1	1	-	1	
Hasper	7	2	4	-	4	2	4	4	4	8	7	6	6	6	8	7	8	9	6	9	4	6	7	9	7	9	8	7	7	7	
Fürwigge	1	5	3	5	6	7	8	8	8	9	10	2	6	6	8	6	7	3	1	2	3	-	-	1	2	1	2	1	-	2	
Fülbecke	-	-	1	1	1	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	
Ahausen	104	49	38	41	161	18	82	5	156	5	90	10	52	8	166	58	23	61	61	18	217	36	146	3	72	28	77	185	129	41	
Summe	23	336	575	870	803	800	1162	964	1128	1315 9	987	507	217	277	821	819	1015	772	878	918	551	472	835	977	785	905	756	848	639	896	
Summe NG	230	377	619	467	355	369	558	415	524	528 3	309	219	239	123	286	249	323	369	408	359	416	334	436	530	399	536	382	458	429	445	

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

Oktober 2023

Bigge	468	375	65	392	517	77	256	304	273	358	312	350	47	156	171	288	351	241	287	209	359	179	171	234	149	258	522	917	853	363	188
Möhne	267	316	180	276	276	262	337	281	290	355	353	249	204	102	60	14	82	26	81	240	321	160	80	241	160	160	321	481	241	159	126
Sorpe	68	81	89	23	23	4	4	4	21	3	4	2	82	30	34	4	3	4	31	80	82	68	80	60	23	17	57	108	421	258	107
Henne	72	107	71	90	89	103	85	101	84	84	101	68	67	51	67	84	101	51	84	51	50	34	51	50	34	17	17	68	101	-	17
Verse	54	57	42	71	56	71	56	57	42	42	57	28	-	28	43	28	42	29	28	28	14	28	-	14	-	-	42	71	71	98	85
Ennepe	31	32	24	32	24	40	32	40	32	40	40	24	-	-	15	24	24	24	8	8	56	47	-	8	56	48	104	143	150	127	111
Öster	10	10	15	10	10	-	-	-	10	-	10	-	-	-	10	-	10	-	10	-	25	30	70	65	10	10	10	50	45	65	65
Glör	4	4	4	5	5	4	5	5	3	5	3	2	2	1	3	2	3	1	3	4	10	10	8	9	16	20	29	32	36	31	29
Jubach	1	2	-	1	1	2	2	2	2	2	2	1	7	3	2	3	2	3	2	11	2	3	3	4	13	7	9	14	2	8	4
Hasper	10	7	7	7	9	8	7	11	6	49	32	8	2	4	8	9	8	6	6	1	3	3	3	2	1	4	8	16	13	17	16
Fürwigge	3	1	1	2	3	1	3	2	4	2	2	3	3	-	-	-	-	1	-	10	24	25	22	18	21	16	24	33	41	3	14
Fülbecke	-	-	-	-	-	-	-	-	1	1		1	-	-	1	-	-	-	-	-	1	1	1	1	1	-		-	-	-	-
Ahausen	38	152	301	174	118	67	91	105	26	18	28	146	54	39	7	5	3	87	92	92	128	38	109	54	18	18	29	113	77	103	272
Summe	1026	840	669	689	895	631	871	905	794	916	817	584	187	65	193	437	593	230	200	446	680	488	265	50	435	24	1114	2018	1896	1005 !	587
Summe NG	407	504	340	343	388	361	418	378	395	436	450	315	189	81	27	94	180	21	28	269	353	194	109	251	149	160	395	657	763	417	216

NG = Nordgruppe (Möhne-, Sorpe-, Hennetalsperre)

November 2022 Entziehung bis Pegel Villigst: 2,96 m³/s Abfluss der Ruhr Talsperrenzuschuss Pegel Villigst und -aufstau Dat. ohne Talschwarz = Zuschussunbesperrengemessen rot = Aufstau einflusst einfluss 1.000 m³ m³/s m³/s m³/s m³/s 1. 97 1,12 6,61 8,45 5,49 2. 211 2,44 6,93 7,45 4,49 3. 188 2,18 7,08 7,86 4,90 4. 207 2,40 7,72 8,28 5,32 5. 124 1,44 6,88 8,40 5,44 6. 256 2,96 6,12 6,12 3,16 7. 2,22 192 6,84 7,58 4,62 8. 289 3,34 6,82 6,44 3,48 9. 7,11 4,15 331 3,83 7,98 7,37 4,41 10. 231 2,67 7,08 11. 259 3,00 6,81 6,77 3,81 12. 313 3,62 6,74 6,08 3,12 13. 248 2,87 5,90 5,99 3,03 14. 410 4,75 6,91 5,12 2,16 15. 271 3,14 6,69 6,51 3,55 16. 275 3,18 7,62 7,40 4,44 9,20 17. 269 3,11 9,35 6,24 176 10,35 18. 2,04 9,43 7,39 19. 10,61 7,65 31 0,36 8,01 20. 237 2,74 7,37 7,59 4,63 21. 27 0,31 11,41 14,68 11,72 22. 8 0,09 9,65 12,52 9,56 23. 49 0,57 8,34 11,87 8,91 24. 39 0,45 7,11 9,62 6,66 25. 126 1,46 7,86 12,28 9,32 26. 77 0,89 7,80 11,65 8,69 27. 96 1,11 6,65 10,72 7,76 28. 72 0,83 7,37 11,16 8,20 29. 10 0,12 10,36 13,20 10,24

30.

106

4.119

1,23

47,67

7,92

229,36

12,11

270,49

9,15

181,69

November 2022

bis Pegel Hattingen: 3,89 m³/s, / bis Pegel Mülheim: 5,24 m³/s / bis Mündung: 5,85 m³/s

DIS Peg	ger Hattinge 	en: 3,89 m ⁻	³/s, / bis Peg	jei iviuinein		der Ruhr	aung: 5,85	m ² /S
	Talsperrer und -a	nzuschuss Jufstau	Pe	egel Hattinge		Pegel	Münd	lung *
Dat.		= Zuschuss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	50	0,58	18,91	23,39	19,50	21,05	27,27	21,42
2.	20	0,23	14,18	17,85	13,96	15,80	21,13	15,28
3.	161	1,86	18,98	21,00	17,11	13,90	17,53	11,68
4.	173	2,00	22,38	24,26	20,37	23,38	27,02	21,17
5.	318	3,68	19,75	19,95	16,06	20,46	22,35	16,50
6.	298	3,45	20,32	20,77	16,88	19,96	22,08	16,23
7.	341	3,95	19,49	19,43	15,54	20,94	22,56	16,71
8.	538	6,23	17,02	14,69	10,80	18,14	17,42	11,57
9.	350	4,05	17,87	17,71	13,82	18,45	19,93	14,08
10.	500	5,79	20,43	18,54	14,65	21,61	21,38	15,53
11.	507	5,87	17,21	15,22	11,33	18,22	17,85	12,00
12.	414	4,79	15,47	14,57	10,68	15,99	16,69	10,84
13.	448	5,19	17,94	16,64	12,75	15,16	15,44	9,59
14.	548	6,34	15,92	13,47	9,58	15,60	14,71	8,86
15.	471	5,45	17,34	15,78	11,89	17,40	17,45	11,60
16.	604	6,99	19,40	16,30	12,41	20,98	19,51	13,66
17.	530	6,13	28,14	25,89	22,00	30,54	30,08	24,23
18.	332	3,84	31,14	31,18	27,29	32,96	34,87	29,02
19.	192	2,22	25,29	26,95	23,06	26,71	30,16	24,31
20.	317	3,67	26,75	34,31	30,42	27,04	36,49	30,64
21.	537	6,22	39,68	49,78	45,89	43,80	56,08	50,23
22.	411	4,76	37,51	46,16	42,27	40,30	51,06	45,21
23.	1.369	15,84	36,72	56,45	52,56	39,98	61,98	56,13
24.	1.576	18,24	33,68	55,81	51,92	39,27	63,69	57,84
25.	1.430	16,55	33,03	53,47	49,58	37,73	60,41	54,56
26.	937	10,84	31,12	45,85	41,96	33,56	50,39	44,54
27.	988	11,44	28,20	43,53	39,64	33,75	51,18	45,33
28.	815	9,43	29,39	42,70	38,81	30,96	46,32	40,47
29.	741	8,58	31,38	43,84	39,95	34,43	48,97	43,12
30.	559	6,47	27,52	37,88	33,99	30,26	42,59	36,74
Σ	2.985	34,55	732,17	883,39	766,69	778,32	984,60	809,10

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

Dezember 2022 Entziehung bis Pegel Villigst: 2,96 m³/s Abfluss der Ruhr Talsperrenzuschuss Pegel Villigst und -aufstau Dat. ohne Talschwarz = Zuschuss unbegemessen sperrenrot = Aufstau einflusst einfluss 1.000 m³ m³/s m³/s m³/s m³/s 174 2,01 7,34 12,31 9,35 1. 2. 36 0,42 7,02 10,40 7,44 3. 21 0,24 7,07 10,27 7,31 4. 46 0.53 7.17 9.60 6.64 5. 29 0,34 7,87 11,17 8,21 6. 95 1,10 9,88 13,94 10,98 7. 127 1,47 9,33 13,76 10,80 8. 139 1,61 9,18 13,75 10,79 9. 299 3,46 10,62 17,04 14,08 10. 194 2,25 8,28 13,49 10,53 11. 219 2,53 7,70 13,19 10,23 12. 135 1,56 8,22 12,74 9,78 13. 163 1,89 7,00 11,85 8,89 14. 171 1,98 6,40 11,34 8,38 15. 26 0,30 6,68 9,94 6,98 16. 56 0,65 6,83 9,14 6,18 17. 14 0,16 6,00 8,80 5,84 18. 104 1,20 7,17 8,93 5,97 19. 119 1,38 8,00 9,58 6,62 7,72 20. 56 0,65 8,37 10,68 21. 25 0,29 7,67 10,92 7,96 22. 180 2,08 11,78 16,82 13,86 5,56 23. 480 20,06 28,58 25,62 24. 1.025 11,86 42,17 39,21 27,35 25. 1.349 15,61 27,85 46,42 43,46 26. 1.421 16,45 40,74 60,15 57,19 27. 1.757 20,34 42,99 66,29 63,33 28. 1.407 16,28 40,10 59,34 56,38 29. 1.266 14,65 35,40 53,01 50,05

Dezember 2022

bis Pegel Hattingen: 3,90 m³/s, / bis Pegel Mülheim: 5,25 m³/s / bis Mündung: 5,83 m³/s

		nzuschuss	7/S, / DIS Peg			der Ruhr		
		ıufstau	Pe	egel Hattinge	en	Pegel	Münd	lung *
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	557	6,45	25,86	36,21	32,31	26,28	38,55	32,72
2.	539	6,24	23,32	33,45	29,55	24,29	36,31	30,48
3.	403	4,66	24,63	33,20	29,30	24,14	34,57	28,74
4.	191	2,21	22,13	28,24	24,34	22,56	30,47	24,64
5.	115	1,33	24,72	29,94	26,04	31,04	38,18	32,35
6.	0	0	28,13	32,04	28,14	30,91	36,70	30,87
7.	101	1,17	30,16	35,23	31,33	25,54	32,44	26,61
8.	136	1,57	27,09	32,56	28,66	30,65	38,03	32,20
9.	145	1,68	35,15	40,73	36,83	38,04	45,64	39,81
10.	136	1,57	24,43	29,90	26,00	20,44	27,67	21,84
11.	415	4,80	27,98	36,67	32,77	23,26	33,81	27,98
12.	341	3,95	24,52	32,36	28,46	18,20	27,80	21,97
13.	244	2,82	24,91	31,64	27,74	21,49	30,01	24,18
14.	249	2,88	21,39	28,18	24,28	24,89	33,52	27,69
15.	127	1,47	19,39	24,76	20,86	18,78	25,88	20,05
16.	283	3,28	21,34	28,51	24,61	19,35	28,29	22,46
17.	238	2,75	18,98	25,64	21,74	18,37	26,77	20,94
18.	100	1,16	17,03	19,77	15,87	16,12	20,52	14,69
19.	165	1,91	23,73	25,72	21,82	24,02	27,77	21,94
20.	217	2,51	25,25	26,63	22,73	27,31	30,49	24,66
21.	227	2,63	25,12	26,39	22,49	26,54	29,59	23,76
22.	44	0,51	37,75	41,14	37,24	39,06	44,46	38,63
23.	117	1,35	64,16	69,42	65,52	68,83	76,57	70,74
24.	617	7,14	92,66	103,70	99,80	91,25	105,19	99,36
25.	2.169	25,10	92,49	121,50	117,60	91,09	123,27	117,44
26.	3.994	46,23	127,02	177,15	173,25	129,05	183,24	177,41
27.	4.281	49,55	134,76	188,21	184,31	136,65	194,32	188,49
28.	4.063	47,03	122,70	173,62	169,72	129,70	184,71	178,88
29.	5.184	60,00	115,89	179,78	175,88	123,37	191,44	185,61
30.	3.879	44,90	104,42	153,22	149,32	109,30	161,84	156,01
31.	3.026	35,02	113,00	151,93	148,03	115,81	158,43	152,60
Σ	30.797	356,45	1.520,12	1.997,44	1.876,54	1.546,33	2.096,49	1.915,76

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

30.

31.

969

828

12.140

11,22

9,58

140,51

29,46

28,08

467,61

43,63

40,62

699,88

40,67

37,66

608,12

	Talsperren und -a			ofluss der Ru Pegel Villigst	
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m ³	m³/s	m³/s	m³/s	m³/s
1.	799	9,25	25,90	38,10	35,15
2.	654	7,57	25,40	35,92	32,97
3.	631	7,30	25,78	36,03	33,08
4.	671	7,77	26,17	36,89	33,94
5.	741	8,58	28,80	40,33	37,38
6.	692	8,01	28,47	39,43	36,48
7.	838	9,70	29,68	42,33	39,38
8.	787	9,11	29,27	41,33	38,38
9.	794	9,19	32,25	44,39	41,44
10.	1.016	11,76	35,04	49,75	46,80
11.	1.032	11,94	39,75	54,64	51,69
12.	1.420	16,44	61,01	80,40	77,45
13.	3.093	35,80	116,36	155,11	152,16
14.	3.862	44,70	101,02	148,67	145,72
15.	3.211	37,16	101,92	142,03	139,08
16.	3.160	36,57	90,57	130,09	127,14
17.	2.404	27,82	83,09	113,86	110,91
18.	1.899	21,98	67,71	92,64	89,69
19.	1.275	14,76	57,56	75,27	72,32
20.	1.054	12,20	48,19	63,34	60,39
21.	643	7,44	40,91	51,30	48,35
22.	535	6,19	36,24	45,38	42,43
23.	362	4,19	32,19	39,33	36,38
24.	455	5,27	26,31	34,53	31,58
25.	442	5,12	23,12	31,19	28,24
26.	426	4,93	22,01	29,89	26,94
27.	542	6,27	22,18	31,40	28,45
28.	485	5,61	22,12	30,68	27,73
29.	400	4,63	19,50	27,08	24,13
30.	467	5,41	19,86	28,22	25,27
31.	442	5,12	22,41	30,48	27,53

35.232

407,78

1.340,79

1.840,02 | 1.748,57

Januar 2023

bis Pegel Hattingen: 3,99 m³/s, / bis Pegel Mülheim: 5,34 m³/s / bis Mündung: 5,93 m³/s

DIS PEG	Jer Hattinge I	211. 3,99 111°	³/s, / bis Peg T	jei iviuirieiri				111-73
		nzuschuss	D.			der Ruhr	Münd	
Dat.		ufstau	P	egel Hattinge 	ohne Tal-	Pegel Mülheim		ohne Tal-
		= Zuschuss Aufstau	gemessen	unbe- einflusst	sperren-	gemessen	unbe- einflusst	sperren-
			3/-		einfluss	3/-		einfluss
1	1.000 m ³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	1.978	22,89	114,54	141,42	137,43	116,91	147,32	141,39
2.	1.611	18,65	116,25	138,89	134,90	115,71	141,79	135,86
3.	1.425	16,49	105,73	126,21	122,22	110,29	134,10	128,17
4.	1.150	13,31	101,54	118,84	114,85	108,50	129,06	123,13
5.	1.116	12,92	122,59	139,51	135,52	130,03	150,52	144,59
6.	1.118	12,94	119,15	136,08	132,09	127,24	147,71	141,78
7.	1.422	16,46	119,43	139,87	135,88	126,83	150,85	144,92
8.	1.560	18,06	115,43	137,47	133,48	119,73	145,26	139,33
9.	1.709	19,78	126,99	150,76	146,77	132,03	159,50	153,57
10.	1.356	15,69	142,27	161,96	157,97	149,08	172,67	166,74
11.	1.491	17,26	187,95	209,20	205,21	186,07	211,81	205,88
12.	1.833	21,22	279,40	304,60	300,61	260,36	291,21	285,28
13.	562	6,50	517,53	515,02	511,03	509,17	515,63	509,70
14.	1.338	15,49	428,55	448,02	444,03	479,87	508,20	502,27
15.	13.121	151,86	425,81	581,67	577,68	463,84	630,36	624,43
16.	8.581	99,32	379,44	482,74	478,75	413,32	525,75	519,82
17.	5.813	67,28	300,67	371,93	367,94	326,99	405,60	399,67
18.	5.318	61,55	240,57	306,11	302,12	265,48	337,36	331,43
19.	1.718	19,88	201,18	225,05	221,06	220,12	249,02	243,09
20.	16	0,19	157,50	161,30	157,31	181,94	189,90	183,97
21.	1.439	16,66	133,53	120,86	116,87	148,68	139,42	133,49
22.	1.032	11,94	121,28	113,33	109,34	133,82	129,12	123,19
23.	1.677	19,41	110,45	95,03	91,04	121,96	109,51	103,58
24.	1.952	22,59	72,19	53,59	49,60	82,60	66,33	60,40
25.	2.293	26,54	63,91	41,36	37,37	70,62	50,16	44,23
26.	358	4,14	58,38	66,51	62,52	67,15	77,78	71,85
27.	443	5,13	57,68	66,79	62,80	61,54	73,09	67,16
28.	274	3,17	59,07	66,24	62,25	64,69	74,31	68,38
29.	390	4,51	52,88	61,38	57,39	56,96	67,81	61,88
30.	339	3,92	50,95	58,87	54,88	55,87	66,11	60,18
31.	174	2,01	58,00	64,01	60,02	62,28	70,67	64,74
Σ	46.665	540,10	5.140,83	5.804,61	5.680,92	5.469,67	6.267,93	6.084,10
	l .	iinduna = 1					. ,	, ,

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

	Talsperren und -a			Abfluss der Ruhr Pegel Villigst				
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss			
	1.000 m ³	m³/s	m³/s	m³/s	m³/s			
1.	798	9,24	26,60	38,88	35,84			
2.	1.135	13,14	82,03	98,21	95,17			
3.	4.567	52,86	148,16	204,06	201,02			
4.	5.211	60,31	122,16	185,51	182,47			
5.	3.137	36,31	106,91	146,26	143,22			
6.	2.608	30,19	98,25	131,48	128,44			
7.	1.345	15,57	88,39	107,00	103,96			
8.	750	8,68	77,39	89,11	86,07			
9.	148	148 1,71 67		72,20	69,16			
10.	165	165 1,91 53,46		58,41	55,37			
11.	228	228 2,64 47,46		53,14	50,10			
12.	51	0,59	44,63	48,26	45,22			
13.	57	57 0,66		42,93	39,89			
14.	109	1,26	35,96	37,74	34,70			
15.	164	1,90	33,32	34,46	31,42			
16.	263	3,04	31,63	31,63	28,59			
17.	291	3,37	30,45	30,12	27,08			
18.	347	4,02	32,21	31,23	28,19			
19.	3	0,03	42,01	45,08	42,04			
20.	1.087	12,58	49,72	65,34	62,30			
21.	829	9,59	49,14	61,77	58,73			
22.	891	10,31	47,67	61,02	57,98			
23.	245	2,84	49,26	55,14	52,10			
24.	257	2,97	48,01	54,02	50,98			
25.	340	3,94	48,50	55,48	52,44			
26.	374	4,33	46,31	53,68	50,64			
27.	141	1,63	43,65	48,32	45,28			
28.	162	1,88	40,60	45,52	42,48			

Februar 2023 bis Pegel Hattingen: <mark>4,09</mark> m³/s, / bis Pegel Mülheim: <mark>5,46</mark> m³/s / bis Mündung: <mark>6,02</mark> m³/s

			P/s, / bis Pegel Mülheim: 5,46 m³/s / bis Mündung: 6,02 m³/s Abfluss der Ruhr								
	Talsperrer und -a	nzuschuss Jufstau	Pe	egel Hattinge		Pegel	Münd	lung *			
Dat.	schwarz = rot = A	Zuschuss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss			
	1.000 m ³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s			
1.	261	3,02	57,42	64,53	60,44	61,16	70,68	64,66			
2.	598	6,92	183,04	194,05	189,96	162,71	177,72	171,70			
3.	1.093	12,65	378,94	395,68	391,59	365,94	389,81	383,79			
4.	2.250	26,04	322,68	352,81	348,72	340,79	377,87	371,85			
5.	8.987	104,02	262,75	370,85	366,76	266,49	381,60	375,58			
6.	8.606	99,61	238,67	342,36	338,27	236,98	347,18	341,16			
7.	4.114	47,62	189,74	241,45	237,36	192,81	249,57	243,55			
8.	2.807	32,49	158,89	195,46	191,37	171,01	212,09	206,07			
9.	1.938	22,43	137,21	163,73	159,64	151,70	182,28	176,26			
10.	1.312	15,19	111,59	130,87	126,78	124,59	147,41	141,39			
11.	394	4,56	95,99	104,64	100,55	105,39	117,15	111,13			
12.	478	5,53	84,25	93,87	89,78	93,07	105,63	99,61			
13.	570	6,60	76,43	87,12	83,03	82,50	95,98	89,96			
14.	284	3,29	69,59	76,96	72,87	75,96	85,97	79,95			
15.	29	0,34	66,78	71,21	67,12	71,58	78,53	72,51			
16.	112	1,30	63,57	66,37	62,28	67,39	72,63	66,61			
17.	288	3,33	60,98	61,74	57,65	67,61	70,78	64,76			
18.	437	5,06	61,06	60,10	56,01	66,85	68,27	62,25			
19.	491	5,68	80,34	78,74	74,65	86,42	87,49	81,47			
20.	506	5,86	92,20	90,44	86,35	97,10	98,16	92,14			
21.	359	4,16	90,43	98,68	94,59	98,15	109,38	103,36			
22.	2.058	23,82	87,85	115,76	111,67	94,67	125,81	119,79			
23.	1.616	18,70	91,28	114,07	109,98	99,58	125,60	119,58			
24.	1.674	19,38	87,45	110,92	106,83	95,57	122,21	116,19			
25.	667	7,72	88,75	100,56	96,47	97,19	112,02	106,00			
26.	600	6,94	83,34	94,38	90,29	89,31	103,24	97,22			
27.	869	10,06	77,39	91,54	87,45	84,06	101,08	95,06			
28.	801	9,27	75,20	88,56	84,47	79,36	95,50	89,48			
Σ	40.531	469,11	3.473,81	4.057,44	3.942,92	3.625,91	4.311,62	4.143,06			

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

23.241

268,99

1.631,88 | 1.985,99 | 1.900,87

März 2023 Entziehung bis Pegel Villigst: 3,02 m³/s

	Talsperrer und -a			ofluss der Ru Pegel Villigst	
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s
1.	83	0,96	35,92	39,90	36,88
2.	432	5,00	28,80	36,82	33,80
3.	557	6,45	26,27	35,74	32,72
4.	448	5,19	24,09	32,30	29,28
5.	203	2,35	23,20	28,57	25,55
6.	321	3,72	24,47	31,21	28,19
7.	320	3,70	31,62	38,34	35,32
8.	61	0,71	39,12	41,43	38,41
9.	357	4,13	56,48	55,37	52,35
10.	298	3,45	96,89	103,36	100,34
11.	1.823	21,10	131,63	155,75	152,73
12.	687	7,95	117,36	128,33	125,31
13.	199	2,30	101,46	102,18	99,16
14.	10	0,12	91,98	95,12	92,10
15.	37	0,43	86,97	90,42	87,40
16.	245	2,84	79,51	79,69	76,67
17.	371	4,29	71,78	70,51	67,49
18.	108	1,25	63,03	64,80	61,78
19.	312	3,61	58,23	57,64	54,62
20.	519	6,01	51,85	48,86	45,84
21.	122	1,41	43,30	44,91	41,89
22.	136	1,57	41,05	42,50	39,48
23.	114	1,32	40,74	42,44	39,42
24.	295	3,41	43,55	43,16	40,14
25.	455	5,27	42,33	40,08	37,06
26.	75	0,87	56,21	60,10	57,08
27.	1.022	11,83	67,17	82,02	79,00
28.	1.020	11,81	61,43	76,26	73,24
29.	533	6,17	58,93	68,12	65,10
30.	231	2,67	57,72	63,41	60,39
31.	9	0,10	58,65	61,77	58,75
Σ	4.815	55,73	1.811,74	1.961,09	1.867,47

inarz 2023 bis Pegel Hattingen: <mark>4,20</mark> m³/s, / bis Pegel Mülheim: <mark>5,42</mark> m³/s / bis Mündung: <mark>6,00</mark> m³/s

713 1 69			/s, / bis Peg			der Ruhr	aung. 0,00	111 73
	Talsperrer und -a		Pe	egel Hattinge		Pegel	Münd	ung *
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m ³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	353	4,09	65,23	73,52	69,32	70,29	81,00	75,00
2.	420	4,86	61,34	70,40	66,20	65,14	76,55	70,55
3.	324	3,75	53,57	61,52	57,32	59,80	70,00	64,00
4.	643	7,44	51,10	62,74	58,54	55,28	69,17	63,17
5.	810	9,38	47,29	60,87	56,67	50,19	65,97	59,97
6.	583	6,75	47,11	58,06	53,86	53,42	66,58	60,58
7.	375	4,34	62,90	71,45	67,25	67,74	78,67	72,67
8.	430	4,98	82,26	91,45	87,25	94,99	106,97	100,97
9.	318	3,68	114,29	122,17	117,97	120,44	131,48	125,48
10.	212	2,45	255,08	256,83	252,63	250,74	257,51	251,51
11.	1.352	15,65	352,69	341,24	337,04	377,29	372,56	366,56
12.	1.543	17,86	298,60	320,66	316,46	327,28	355,82	349,82
13.	7.682	88,91	254,79	347,91	343,71	270,07	369,88	363,88
14.	2.820	32,64	217,90	254,74	250,54	236,91	279,09	273,09
15.	1.357	15,71	206,46	194,96	190,76	227,15	220,12	214,12
16.	110	1,27	190,79	193,71	189,51	201,95	209,18	203,18
17.	523	6,05	170,22	180,47	176,27	187,21	201,67	195,67
18.	161	1,86	140,72	143,06	138,86	154,96	160,90	154,90
19.	781	9,04	124,74	119,90	115,70	138,14	136,54	130,54
20.	249	2,88	113,58	114,90	110,70	125,64	130,10	124,10
21.	584	6,76	95,47	92,90	88,70	107,81	108,06	102,06
22.	1.081	12,51	89,89	81,57	77,37	102,16	96,49	90,49
23.	567	6,56	91,91	89,55	85,35	99,17	99,50	93,50
24.	696	8,06	104,39	100,53	96,33	117,19	116,28	110,28
25.	958	11,09	106,07	99,19	94,99	120,03	116,08	110,08
26.	1.265	14,64	152,95	142,51	138,31	157,54	150,55	144,55
27.	1.142	13,22	197,03	188,01	183,81	208,69	203,90	197,90
28.	23	0,27	173,38	177,84	173,64	190,25	198,87	192,87
29.	2.598	30,07	150,33	184,61	180,41	161,55	200,00	194,00
30.	2.394	27,71	141,03	172,94	168,74	148,74	184,60	178,60
31.	922	10,67	137,20	152,07	147,87	147,79	166,34	160,34
Σ	12.246	141,74	4.350,31	4.622,27	4.492,07	4.695,56	5.080,42	4.894,42
	-: fl+ A A		ınheeinfluss	+ 1 4 5 Hz = 5 = 5	+ 1 015			•

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

April 2 Entzie	2023 hung bis Pe	egel Villigst.	: <mark>3,00</mark> m³/s		
		nzuschuss Iufstau	1	ofluss der Ru Pegel Villigst	
Dat.		- Zuschuss Aufstau	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s
1.	388	4,49	71,47	78,96	75,96
2.	1.149	13,30	91,86	108,16	105,16
3.	1.317	15,24	87,78	106,02	103,02
4.	393	4,55	84,16	91,71	88,71
5.	301 3,48		75,70	75,22	72,22
6.	336	3,89	67,44	66,55	63,55
7.	440 5,09		67,78	65,69	62,69
8.	241 2,79		63,68	63,89	60,89
9.	730	8,45	56,97	51,52	48,52
10.	521	6,03	50,56	47,53	44,53
11.	358	358 4,14		46,05	43,05
12.	246	2,85	45,70	45,85	42,85
13.	268	3,10	43,64	43,54	40,54
14.	634	7,34	38,76	34,42	31,42
15.	65	0,75	34,22	37,97	34,97
16.	212	2,45	35,80	41,25	38,25
17.	117	1,35	31,44	35,79	32,79
18.	220	2,55	27,00	32,55	29,55
19.	204	2,36	25,42	30,78	27,78
20.	141	1,63	24,77	29,40	26,40
21.	267	3,09	25,62	31,71	28,71
22.	197	2,28	23,99	29,27	26,27
23.	129	1,49	23,15	27,64	24,64
24.	114	1,32	24,35	28,67	25,67
25.	186	2,15	23,18	28,33	25,33
26.	100	1,16	20,80	24,96	21,96
27.	7	0,08	19,50	22,42	19,42
28.	183	2,12	19,12	24,24	21,24
29.	401	4,64	17,78	25,42	22,42
30.	252	2,92	16,38	22,30	19,30
_	4.053	22.66	4 205 24	4 207 04	4 207 04

22,60 | 1.285,21 | 1.397,81 | 1.307,81

April 2023 bis Pegel Hattingen: $4,01~\text{m}^3/\text{s}$, / bis Pegel Mülheim: $5,40~\text{m}^3/\text{s}$ / bis Mündung: $5,95~\text{m}^3/\text{s}$

	Talsperrer	nzuschuss			Abfluss	der Ruhr		
Dat	und -a		Pe	egel Hattinge	en	Pegel	Münd	lung *
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	63	0,73	208,40	211,68	207,67	211,23	219,14	213,19
2.	199	2,30	301,79	303,49	299,48	313,46	321,31	315,36
3.	1.127	13,04	258,77	275,83	271,82	275,16	298,01	292,06
4.	6.429	74,41	220,48	298,90	294,89	240,51	325,13	319,18
5.	4.217	48,81	185,06	237,88	233,87	201,11	259,14	253,19
6.	428	4,95	161,60	170,57	166,56	177,53	190,70	184,75
7.	1.192	13,80	157,66	147,86	143,85	171,48	165,52	159,57
8.	1.835	21,24	154,43	137,20	133,19	171,92	158,42	152,47
9.	1.478	17,11	132,63	119,52	115,51	143,86	134,13	128,18
10.	640	7,41	117,02	113,62	109,61	127,95	127,83	121,88
11.	967	11,19	114,78	107,60	103,59	125,79	121,80	115,85
12.	743	8,60	108,07	103,48	99,47	114,47	112,94	106,99
13.	600	6,94	108,78	105,84	101,83	117,44	117,63	111,68
14.	577	6,68	98,38	95,71	91,70	105,39	105,67	99,72
15.	278	3,22	85,67	86,46	82,45	91,44	95,03	89,08
16.	871	10,08	92,58	86,51	82,50	98,93	95,66	89,71
17.	22	0,25	84,70	88,45	84,44	93,70	100,33	94,38
18.	189	2,19	70,01	76,21	72,20	79,34	88,23	82,28
19.	247	2,86	66,41	67,56	63,55	73,13	76,81	70,86
20.	171	1,98	62,47	68,45	64,44	69,02	77,54	71,59
21.	153	1,77	69,99	75,78	71,77	76,52	84,95	79,00
22.	36	0,42	62,62	66,21	62,20	70,71	76,83	70,88
23.	283	3,28	62,71	69,99	65,98	69,41	79,26	73,31
24.	243	2,81	61,73	68,55	64,54	70,08	79,47	73,52
25.	36	0,42	61,20	65,63	61,62	73,73	80,75	74,80
26.	28	0,32	54,14	58,47	54,46	59,59	66,29	60,34
27.	518	6,00	49,99	60,00	55,99	55,29	67,69	61,74
28.	311	3,60	51,74	59,35	55,34	57,69	67,69	61,74
29.	97	1,12	50,15	55,28	51,27	57,38	64,86	58,91
30.	181	2,09	46,00	52,10	48,09	50,60	58,96	53,01
Σ	4.663	53,97	3.359,94	3.534,20	3.413,90	3.643,87	3.917,72	3.739,22

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

1.953

Mai 2023 Entziehung bis Pegel Villigst: <mark>3,15</mark> m³/s										
	Talsperrer und -a			ofluss der Ru Pegel Villigst						
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss					
	1.000 m ³	m³/s	m³/s	m³/s	m³/s					
1.	194	2,25	15,40	20,80	17,65					
2.	182	2,11	15,52	20,78	17,63					
3.	180	2,08	14,94	20,17	17,02					
4.	170 1,97		14,72	19,84	16,69					
5.	86 1,00		17,17	21,32	18,17					
6.	213	2,47	19,10	24,72	21,57					
7.	62	0,72	20,45	24,32	21,17					
8.	41	0,47	22,99	25,67	22,52					
9.	250	2,89	30,14	36,18	33,03					
10.	36	0,42	64,89	68,46	65,31					
11.	346 4,00		56,27	63,42	60,27					
12.	565 6,54		72,55	82,24	79,09					
13.	750	8,68	74,17	68,64	65,49					
14.	935	10,82	67,94	60,27	57,12					
15.	1.674	19,38	57,58	41,35	38,20					
16.	91	1,05	47,57	49,67	46,52					
17.	79	0,91	39,03	41,27	38,12					
18.	136	1,57	30,99	35,71	32,56					
19.	47	0,54	27,23	29,84	26,69					
20.	34	0,39	24,60	28,14	24,99					
21.	55	0,64	24,10	27,89	24,74					
22.	22	0,25	46,41	49,81	46,66					
23.	705	8,16	52,02	63,33	60,18					
24.	4	0,05	38,38	41,48	38,33					
25.	74	0,86	32,49	36,50	33,35					
26.	34	0,39	28,16	30,92	27,77					
27.	63	0,73	24,58	27,00	23,85					
28.	190	2,20	22,62	23,57	20,42					
29.	266 3,08		20,59 20,66		17,51					
30.	269	3,11	18,63	18,67	15,52					
31.	163	1,89	16,75	18,01	14,86					

1.296

15,00

1.057,98

1.140,63 | 1.042,98

Mai 2023 bis Pegel Hattingen: 4,18 m³/s, / bis Pegel Mülheim: 5,61 m³/s / bis Mündung: 6,20 m³/s

DIS Peg	gel Hattingen: <mark>4,18 m³</mark> /s, / bis Pegel Mülheim: <mark>5,61</mark> m³/s / bis Mündung: <mark>6,20</mark> m³/s								
		nzuschuss		111.00		der Ruhr I	l		
Dat.	und -a	utstau	P€	egel Hattinge 	en ohne Tal-	Pegel Mülheim	Mund	lung * ohne Tal-	
	schwarz = rot = A		gemessen	unbe- einflusst	sperren- einfluss	gemessen	unbe- einflusst	sperren- einfluss	
	1.000 m ³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	
1.	706	8,17	41,53	53,88	49,70	44,20	58,85	52,65	
2.	468	5,42	41,51	51,11	46,93	44,82	56,69	50,49	
3.	282	3,26	41,08	48,52	44,34	45,12	54,81	48,61	
4.	143	1,66	36,71	42,55	38,37	37,98	45,93	39,73	
5.	276	3,19	40,10	47,48	43,30	41,24	50,80	44,60	
6.	79	0,91	48,54	53,64	49,46	52,76	60,18	53,98	
7.	84	0,97	46,19	51,33	47,15	47,91	55,30	49,10	
8.	155	1,79	54,31	60,29	56,11	57,38	65,75	59,55	
9.	30	0,35	61,81	65,65	61,47	61,53	67,80	61,60	
10.	98	1,13	147,81	150,86	146,68	149,67	156,46	150,26	
11.	323	3,74	144,90	152,81	148,63	155,18	167,00	160,80	
12.	776	8,98	178,05	191,21	187,03	186,85	204,46	198,26	
13.	1.000	11,57	175,17	190,92	186,74	185,92	206,15	199,95	
14.	922	10,67	157,17	172,02	167,84	170,41	189,50	183,30	
15.	1.325	15,34	141,11	129,96	125,78	156,06	148,53	142,33	
16.	1.733	20,06	115,93	100,05	95,87	129,10	116,38	110,18	
17.	2.849	32,97	88,67	59,88	55,70	100,20	73,93	67,73	
18.	699	8,09	73,01	69,09	64,91	79,39	78,06	71,86	
19.	15	0,17	62,95	66,96	62,78	68,90	75,45	69,25	
20.	203	2,35	58,58	65,11	60,93	64,66	73,71	67,51	
21.	248	2,87	53,70	55,01	50,83	57,11	60,74	54,54	
22.	21	0,24	65,36	69,29	65,11	65,76	72,19	65,99	
23.	67	0,78	97,82	101,23	97,05	104,77	111,24	105,04	
24.	189	2,19	71,39	73,39	69,21	75,79	80,41	74,21	
25.	703	8,14	63,85	76,17	71,99	69,41	84,40	78,20	
26.	96	1,11	53,78	56,85	52,67	58,26	63,70	57,50	
27.	139	1,61	48,00	50,57	46,39	48,69	53,48	47,28	
28.	175	2,03	45,65	47,81	43,63	48,62	52,99	46,79	
29.	251	2,91	42,74	44,01	39,83	44,56	47,96	41,76	
30.	477	5,52	38,59	37,25	33,07	41,14	41,84	35,64	
31.	507	5,87	34,18	32,49	28,31	35,46	35,73	29,53	
Σ	2.799	32,40	2.370,21	2.467,40	2.337,82	2.528,83	2.710,40	2.518,20	

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

	Talsperrer und -a		Abfluss der Ruhr Pegel Villigst				
Dat.	schwarz = rot = A	: Zuschuss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss		
	1.000 m³	m³/s	m³/s	m³/s	m³/s		
1.	159	1,84	15,97	17,67	14,13		
2.	241	2,79	15,15	15,90	12,36		
3.	165	1,91	14,22	15,85	12,31		
4.	211	2,44	13,75	14,85	11,31		
5.	319	3,69	12,41	12,26	8,72		
6.	206 2,38 11,26 12,4		12,42	8,88			
7.	52	0,60	10,51	13,45	9,91		
8.	27	0,31	10,71	14,56	11,02		
9.	183	2,12	8,85	10,27	6,73		
10.	133	133 1,54 8,96		10,96	7,42		
11.	192	2,22	8,00	9,32	5,78		
12.	214	2,48	7,82	8,88	5,34		
13.	402	4,65	9,63	8,52	4,98		
14.	476	5,51	8,28	6,31	2,77		
15.	405	4,69	9,80	8,65	5,11		
16.	454	5,25	8,24	6,53	2,99		
17.	475	5,50	9,12	7,16	3,62		
18.	475	5,50	9,14	7,18	3,64		
19.	559	6,47	8,12	5,19	1,65		
20.	530	6,13	8,83	6,24	2,70		
21.	258	2,99	16,51	17,06	13,52		
22.	1.067	12,35	34,25	25,44	21,90		
23.	429	4,97	72,84	81,35	77,81		
24.	1.546	17,89	45,09	66,52	62,98		
25.	310	3,59	32,03	31,98	28,44		
26.	239	2,77	20,22	20,99	17,45		
27.	128	1,48	16,68	18,74	15,20		
28.	147	1,70	14,32	16,16	12,62		
29.	225 2,60				15,98		
30.	76	0,88	14,46	17,12	13,58		

Juni 2023 bis Pegel Hattingen: <mark>4,69</mark> m³/s, / bis Pegel Mülheim: <mark>6,31</mark> m³/s / bis Mündung: <mark>7,01</mark> m³/s

			7/S, / DIS Peg			der Ruhr		
	und -a	nzuschuss Jufstau	Pe	egel Hattinge	en	Pegel	Münd	ung *
Dat.	schwarz = rot = A	Zuschuss Aufstau	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	559	6,47	33,41	31,62	26,93	32,69	33,02	26,01
2.	314	3,63	31,50	32,56	27,87	33,01	36,22	29,21
3.	265	3,07	27,47	29,10	24,41	28,87	32,60	25,59
4.	427	4,94	28,23	27,98	23,29	28,42	30,23	23,22
5.	353	4,09	27,24	27,84	23,15	28,78	31,47	24,46
6.	428	4,95	21,40	21,14	16,45	21,60	23,30	16,29
7.	462	5,35	24,45	23,79	19,10	24,00	25,34	18,33
8.	441	5,10	27,67	27,26	22,57	27,77	29,41	22,40
9.	259	3,00	24,28	25,97	21,28	24,93	28,68	21,67
10.	74	0,86	22,06	25,89	21,20	22,70	28,58	21,57
11.	268	3,10	20,06	21,64	16,95	21,63	25,21	18,20
12.	283	3,28	19,70	21,12	16,43	18,96	22,32	15,31
13.	506	5,86	21,25	20,08	15,39	21,25	22,03	15,02
14.	527	6,10	21,95	20,54	15,85	21,27	21,80	14,79
15.	540	6,25	18,95	17,39	12,70	19,88	20,25	13,24
16.	944	10,93	22,57	16,34	11,65	22,46	18,12	11,11
17.	862	9,98	17,21	11,92	7,23	18,66	15,22	8,21
18.	893	10,34	21,04	15,39	10,70	18,64	14,83	7,82
19.	918	10,63	20,56	14,63	9,94	21,15	17,09	10,08
20.	930	10,76	21,09	15,01	10,32	20,06	15,83	8,82
21.	1.010	11,69	24,23	17,23	12,54	23,44	18,34	11,33
22.	1.003	11,61	54,84	47,92	43,23	52,87	48,28	41,27
23.	707	8,18	136,21	132,72	128,03	153,69	154,09	147,08
24.	1.846	21,37	73,56	56,88	52,19	81,04	66,97	59,96
25.	571	6,61	51,69	62,99	58,30	55,27	69,21	62,20
26.	1.228	14,21	39,00	57,91	53,22	39,49	60,92	53,91
27.	714	8,26	34,41	30,84	26,15	35,28	33,83	26,82
28.	645	7,47	27,53	24,75	20,06	28,28	27,52	20,51
29.	477	5,52	28,44	27,61	22,92	29,46	30,70	23,69
30.	560	6,48	28,68	26,89	22,20	27,80	28,04	21,03
Σ	15.416	178,43	970,69	932,96	792,26	1.003,37	1.029,46	819,16

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

5.849

67,70

488,55

527,05

420,85

	Talsperrer und -a			Abfluss der Ruhr Pegel Villigst				
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss			
	1.000 m ³	m³/s	m³/s	m³/s	m³/s			
1.	22	0,25	12,91	15,74	12,66			
2.	107	1,24	11,57	13,41	10,33			
3.	221	2,56	10,72	11,24	8,16			
4.	261	3,02	10,19	10,25	7,17			
5.	110	1,27	12,30	14,11	11,03			
6.	178	2,06	11,76	12,78	9,70			
7.	250	2,89	9,48	9,67	6,59			
8.	200	2,31	9,07	9,84	6,76			
9.	303	3,51	8,73	8,30	5,22			
10.	423	4,90	8,76	6,94	3,86			
11.	344	3,98	9,04	8,14	5,06			
12.	385	4,46	9,40	8,02	4,94			
13.	428	4,95	9,36	7,49	4,41			
14.	304	3,52	9,83	9,39	6,31			
15.	366	4,24	8,82	7,66	4,58			
16.	358	4,14	8,62	7,56	4,48			
17.	426	4,93	8,42	6,57	3,49			
18.	503	5,82	8,67	5,93	2,85			
19.	469	5,43	9,71	7,36	4,28			
20.	645	7,47	12,61	8,22	5,14			
21.	363	4,20	9,67	8,55	5,47			
22.	368	4,26	8,85	7,67	4,59			
23.	439	5,08	8,87	6,87	3,79			
24.	702	8,13	11,22	6,18	3,10			
25.	203	2,35	13,12	13,85	10,77			
26.	347	4,02	11,90	10,96	7,88			
27.	313	3,62	15,40	14,86	11,78			
28.	175	2,03	14,41	19,52	16,44			
29.	31	0,36	15,41	18,13	15,05			
30.	121	1,40	13,26	17,74	14,66			
31.	99	1,15	13,54	15,47	12,39			
								

8.872

102,69

335,62

328,41

232,93

bis Pegel Hattingen: 4,15 m³/s, / bis Pegel Mülheim: 5,51 m³/s / bis Mündung: 6,09 m³/s

JIS FEG			/s, / bis Peg	er munienn		der Ruhr	ung. 6,09	111 /3
		nzuschuss Jufstau	Pe	egel Hattinge		Pegel	Münd	ung *
Dat.	schwarz =	- Zuschuss Aufstau	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m ³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	173	2,00	28,85	30,99	26,84	32,02	36,05	29,96
2.	278	3,22	23,66	24,60	20,45	25,45	28,16	22,07
3.	299	3,46	24,17	24,85	20,70	24,12	26,56	20,47
4.	298	3,45	21,46	22,16	18,01	20,09	22,48	16,39
5.	552	6,39	24,63	22,39	18,24	25,14	24,62	18,53
6.	671	7,77	28,95	25,33	21,18	30,31	28,47	22,38
7.	125	1,45	23,51	26,21	22,06	23,74	28,21	22,12
8.	421	4,87	20,06	19,34	15,19	19,60	20,55	14,46
9.	774	8,96	20,97	16,16	12,01	25,38	22,27	16,18
10.	537	6,22	26,55	24,48	20,33	28,34	28,05	21,96
11.	751	8,69	18,82	14,28	10,13	17,73	14,77	8,68
12.	808	9,35	22,59	17,39	13,24	23,35	19,80	13,71
13.	722	8,36	20,54	16,33	12,18	21,15	18,58	12,49
14.	931	10,78	23,26	16,64	12,49	22,46	17,45	11,36
15.	808	9,35	19,34	14,15	10,00	20,56	16,97	10,88
16.	795	9,20	21,27	16,21	12,06	19,95	16,50	10,41
17.	831	9,62	20,02	14,55	10,40	21,19	17,33	11,24
18.	731	8,46	19,85	15,54	11,39	18,91	16,20	10,11
19.	920	10,65	18,35	11,86	7,71	17,42	12,47	6,38
20.	996	11,53	29,37	21,99	17,84	32,31	26,68	20,59
21.	1.064	12,31	19,88	11,72	7,57	19,24	12,63	6,54
22.	1.236	14,31	20,73	10,57	6,42	20,00	11,38	5,29
23.	855	9,90	21,14	15,40	11,25	23,09	18,99	12,90
24.	774	8,96	24,57	19,76	15,61	27,40	24,32	18,23
25.	987	11,42	33,63	26,36	22,21	38,42	33,00	26,91
26.	1.159	13,41	24,81	15,54	11,39	24,91	17,26	11,17
27.	563	6,52	37,88	35,51	31,36	41,02	40,61	34,52
28.	727	8,41	40,97	36,71	32,56	47,39	45,16	39,07
29.	713	8,25	43,21	39,10	34,95	45,45	43,35	37,26
30.	505	5,84	39,55	49,54	45,39	46,59	58,81	52,72
31.	67	0,78	40,98	45,91	41,76	46,09	53,16	47,07
Σ	19.927	230,64	803,60	701,60	572,95	848,84	800,83	612,04
. ,	. (1	induna – u			+ 4 045			

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

August 2023 Entziehung bis Pegel Villigst: <mark>3,06</mark> m³/s						
	Talsperrenzuschuss und -aufstau		Abfluss der Ruhr Pegel Villigst			
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	
	1.000 m³	m³/s	m³/s	m³/s	m³/s	
1.	402	4,65	37,05	44,76	41,70	
2.	849	9,83	34,48	47,37	44,31	
3.	55	0,64	37,40	41,10	38,04	
4.	79	0,91	40,19	44,16	41,10	
5.	179	2,07	36,26	41,39	38,33	
6.	138	1,60	42,51	47,17	44,11	
7.	1.305	15,10	71,24	89,40	86,34	
8.	1.523	17,63	74,17	94,86	91,80	
9.	1.125	13,02	77,76	93,84	90,78	
10.	699	8,09	70,26	81,41	78,35	
11.	123	1,42	60,10	61,74	58,68	
12.	312	3,61	60,95	60,40	57,34	
13.	295	3,41	59,38	59,03	55,97	
14.	900	10,42	49,22	41,86	38,80	
15.	23	0,27	52,06	54,85	51,79	
16.	374	4,33	46,96	54,35	51,29	
17.	110	1,27	42,64	46,97	43,91	
18.	41	0,47	38,91	41,50	38,44	
19.	91	1,05	33,88	35,89	32,83	
20.	284	3,29	31,01	30,78	27,72	
21.	499	5,78	27,75	25,03	21,97	
22.	510	5,90	24,79	21,95	18,89	
23.	338	3,91	21,28	20,43	17,37	
24.	515	5,96	20,56	17,66	14,60	
25.	393	4,55	29,37	27,88	24,82	
26.	160	1,85	25,17	30,08	27,02	
27.	271	3,14	20,78	20,70	17,64	
28.	324	3,75	19,74	19,05	15,99	
29.	555	6,42	18,76	15,40	12,34	
30.	425	4,92	19,45	17,59	14,53	
31.	133	1,54	24,22	25,74	22,68	
Σ	966	11,18	1.248,30	1.354,34	1.259,48	

August 2023 bis Pegel Hattingen: 4,14 m³/s, / bis Pegel Mülheim: 5,54 m³/s / bis Mündung: 6,11 m³/s

	Talanarrar		-,			der Ruhr		
	Talsperrenzuschuss und -aufstau		Pegel Hattingen		Pegel Mündung *		ung *	
Dat.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	Mülheim gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	14	0,16	90,83	95,13	90,99	105,97	113,35	107,24
2.	424	4,91	81,34	80,56	76,42	90,61	92,61	86,50
3.	943	10,91	98,01	113,06	108,92	105,55	123,84	117,73
4.	1.410	16,32	114,20	134,66	130,52	122,91	146,95	140,84
5.	498	5,76	100,80	110,71	106,57	109,26	122,38	116,27
6.	1.104	12,78	104,64	121,56	117,42	113,99	134,30	128,19
7.	876	10,14	173,02	187,30	183,16	174,34	192,87	186,76
8.	188	2,18	193,88	200,19	196,05	201,30	212,15	206,04
9.	2.303	26,66	189,11	219,91	215,77	195,20	230,81	224,70
10.	3.249	37,60	157,38	199,12	194,98	171,02	217,37	211,26
11.	2.052	23,75	133,49	161,38	157,24	144,79	176,70	170,59
12.	501	5,80	128,80	138,74	134,60	133,38	146,89	140,78
13.	854	9,88	125,38	119,64	115,50	143,19	140,93	134,82
14.	656	7,59	103,45	99,99	95,85	111,63	111,22	105,11
15.	625	7,23	101,94	98,85	94,71	101,11	100,90	94,79
16.	1.573	18,21	108,22	94,16	90,02	117,94	106,86	100,75
17.	296	3,43	100,64	101,36	97,22	115,90	119,79	113,68
18.	1.225	14,18	86,62	104,93	100,79	95,78	117,23	111,12
19.	365	4,22	72,90	81,27	77,13	82,61	93,76	87,65
20.	309	3,58	68,32	68,89	64,75	74,71	77,83	71,72
21.	236	2,73	60,36	61,76	57,62	64,99	68,81	62,70
22.	767	8,88	54,70	49,96	45,82	58,97	56,47	50,36
23.	873	10,10	46,73	40,77	36,63	50,66	46,78	40,67
24.	1.072	12,41	45,01	36,74	32,60	46,85	40,58	34,47
25.	706	8,17	65,83	61,80	57,66	73,24	71,67	65,56
26.	897	10,38	66,35	60,11	55,97	76,97	73,21	67,10
27.	984	11,39	50,28	43,03	38,89	56,19	51,10	44,99
28.	362	4,19	47,85	56,18	52,04	50,93	61,57	55,46
29.	683	7,91	45,19	41,42	37,28	49,35	47,69	41,58
30.	704	8,15	44,01	40,00	35,86	47,73	45,80	39,69
31.	997	11,54	58,75	51,35	47,21	62,58	57,43	51,32
Σ	2.434	28,17	2.918,00	3.074,53	2.946,19	3.149,67	3.399,84	3.210,43

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

September 2023 Entziehung bis Pegel Villigst: 3,08 m³/s Abfluss der Ruhr Talsperrenzuschuss Pegel Villigst und -aufstau Dat. ohne Talschwarz = Zuschuss unbegemessen sperrenrot = Aufstau einflusst einfluss 1.000 m³ m³/s m³/s m³/s m³/s 172 1,99 24,60 25,69 22,61 1. 2. 230 25,97 26,39 23,31 2,66 3. 377 4,36 23,30 22,02 18,94 4. 619 7.16 20.94 16.86 13.78 5. 467 5,41 18,69 16,36 13,28 6. 355 4,11 17,40 16,37 13,29 7. 369 4,27 16,60 15,41 12,33 8. 558 6,46 16,32 12,94 9,86 9. 415 4,80 15,59 13,87 10,79 10. 524 6,06 14,67 11,69 8,61 11. 528 6,11 14,06 11,03 7,95 12. 309 3,58 14,33 13,83 10,75 13. 219 2,53 47,52 53,13 50,05 14. 239 2,77 30,66 36,51 33,43 25,24 15. 123 1,42 23,82 28,32 17,68 16. 286 3,31 20,99 20,76 17. 249 2,88 19,48 19,68 16,60 18,00 14,92 18. 323 3,74 18,66 19. 369 4,27 19,56 18,37 15,29 20. 408 4,72 16,44 14,80 11,72 21. 359 4,16 18,54 17,46 14,38 22. 416 4,81 22,18 20,45 17,37 23. 334 3,87 18,18 17,39 14,31 24. 16,56 14,59 436 5,05 11,51 25. 530 6,13 15,47 12,42 9,34 26. 399 13,94 12,40 9,32 4,62 27. 536 6,20 13,94 10,82 7,74 28. 382 4,42 12,64 11,30 8,22 29. 458 5,30 12,35 10,13 7,05 30. 429 4,97 13,23 11,34 8,26

10.256

118,70

576,63

550,33

457,93

September 2023 bis Pegel Hattingen: <mark>4,14</mark> m³/s, / bis Pegel Mülheim: <mark>5,54</mark> m³/s / bis Mündung: <mark>6,17</mark> m³/s

	Talsperrer		Abfluss der Ruhr					
Dat.	und -aufstau		Pe	egel Hattinge	ı	Pegel Mülheim	Münc	lung * I
<i>ν</i> αι.	schwarz = rot = A		gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
_	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	873	10,10	57,55	51,59	47,45	61,25	57,53	51,36
2.	40	0,46	69,44	73,12	68,98	75,56	81,85	75,68
3.	660	7,64	61,07	57,56	53,42	64,27	63,10	56,93
4.	23	0,27	57,09	61,50	57,36	62,40	69,24	63,07
5.	336	3,89	51,14	51,39	47,25	55,30	57,80	51,63
6.	575	6,66	48,13	45,62	41,48	48,99	48,59	42,42
7.	870	10,07	44,73	38,81	34,67	45,48	41,57	35,40
8.	803	9,29	40,97	35,82	31,68	44,80	41,66	35,49
9.	800	9,26	41,77	36,65	32,51	42,66	39,53	33,36
10.	1.162	13,45	37,45	28,14	24,00	38,50	31,05	24,88
11.	964	11,16	38,76	31,74	27,60	40,10	35,00	28,83
12.	1.128	13,06	36,67	27,75	23,61	39,92	32,89	26,72
13.	1.315	15,22	87,60	76,52	72,38	82,11	73,52	67,35
14.	987	11,42	70,96	63,68	59,54	80,51	75,75	69,58
15.	507	5,87	55,67	65,68	61,54	59,17	71,64	65,47
16.	217	2,51	50,19	56,84	52,70	52,95	61,92	55,75
17.	277	3,21	46,83	47,77	43,63	48,30	51,40	45,23
18.	821	9,50	44,12	38,76	34,62	45,80	42,46	36,29
19.	819	9,48	47,29	41,95	37,81	49,02	45,76	39,59
20.	1.015	11,75	38,25	30,64	26,50	41,00	35,32	29,15
21.	772	8,94	37,85	33,06	28,92	39,46	36,61	30,44
22.	878	10,16	55,75	49,73	45,59	59,58	55,79	49,62
23.	918	10,63	42,41	35,93	31,79	42,60	38,08	31,91
24.	551	6,38	38,03	35,80	31,66	41,25	41,02	34,85
25.	472	5,46	35,79	34,47	30,33	35,76	36,37	30,20
26.	835	9,66	32,28	26,76	22,62	32,90	29,21	23,04
27.	977	11,31	30,88	23,72	19,58	31,63	26,26	20,09
28.	785	9,09	29,23	24,29	20,15	28,98	25,82	19,65
29.	905	10,47	31,25	24,91	20,77	32,23	27,70	21,53
30.	756	8,75	33,78	29,17	25,03	35,07	32,34	26,17
Σ	20.547	237,81	1.392,93	1.279,35	1.155,15	1.457,55	1.406,76	1.221,66

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

Oktober 2023 Entziehung bis Pegel Villigst: 3,01 m³/s

	Talsperrer und -a			ofluss der Ru Pegel Villigst		
Dat.	schwarz = rot = A	Zuschuss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	
	1.000 m³	m³/s	m³/s	m³/s	m³/s	
1.	445	5,15	11,47	9,33	6,32	
2.	407	4,71	11,58	9,88	6,87	
3.	504	5,83	14,92	12,10	9,09	
4.	340	3,94	15,50	14,57	11,56	
5.	343	3,97	12,01	11,05	8,04	
6.	388	4,49	11,77	10,29	7,28	
7.	361	4,18	11,40	10,23	7,22	
8.	418	4,84	11,02	9,19	6,18	
9.	378	4,38	11,30	9,93	6,92	
10.	395	4,57	10,88	9,32	6,31	
11.	436	5,05	10,41	8,37	5,36	
12.	450	5,21	11,21	9,01	6,00	
13.	315	3,65	12,43	11,79	8,78	
14.	189	2,19	19,24	20,06	17,05	
15.	81	0,94	15,19	19,14	16,13	
16.	27	0,31	12,05	15,37	12,36	
17.	94	1,09	10,88	12,80	9,79	
18.	180	2,08	11,18	12,11	9,10	
19.	21	0,24	13,44	16,21	13,20	
20.	28	0,32	14,25	17,58	14,57	
21.	269	3,11	24,43	30,55	27,54	
22.	353	4,09	19,96	27,06	24,05	
23.	194	2,25	18,15	23,41	20,40	
24.	109	1,26	17,29	21,56	18,55	
25.	251	2,91	18,91	24,83	21,82	
26.	149	1,72	22,24	26,97	23,96	
27.	160	1,85	24,81	29,67	26,66	
28.	395	4,57	29,52	37,10	34,09	
29.	657	7,60	31,77	42,38	39,37	
30.	763	8,83	34,34	46,18	43,17	
31.	417	4,83	38,86	46,70	43,69	
Σ	1.811	20,96	532,41	604,76	511,45	

Oktober 2023 bis Pegel Hattingen: 4,02 m³/s, / bis Pegel Mülheim: 5,34 m³/s / bis Mündung: 5,93 m³/s

	Talsperrer	nzuschuss	Abfluss der Ruhr					
Dat.	und -aufstau		Pegel Hattingen		Pegel Mülheim	Münd	lung *	
Dat.	schwarz = rot = A	- Zuschuss Aufstau	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss	gemessen	unbe- einflusst	ohne Tal- sperren- einfluss
	1.000 m³	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
1.	848	9,81	29,44	23,65	19,63	29,52	25,43	19,50
2.	639	7,40	28,86	25,49	21,47	28,41	26,76	20,83
3.	896	10,37	30,30	23,95	19,93	31,00	26,36	20,43
4.	1.026	11,88	37,26	29,41	25,39	38,90	32,86	26,93
5.	840	9,72	29,05	23,35	19,33	30,67	26,69	20,76
6.	669	7,74	24,19	20,46	16,44	24,08	22,00	16,07
7.	689	7,97	26,70	22,75	18,73	27,67	25,41	19,48
8.	895	10,36	23,92	17,57	13,55	23,58	18,83	12,90
9.	631	7,30	23,59	20,31	16,29	23,86	22,22	16,29
10.	871	10,08	26,13	20,07	16,05	25,78	21,36	15,43
11.	905	10,47	22,01	15,56	11,54	22,08	17,21	11,28
12.	794	9,19	24,73	19,55	15,53	23,14	19,57	13,64
13.	916	10,60	27,55	20,97	16,95	30,26	25,38	19,45
14.	817	9,46	45,16	39,73	35,71	51,76	48,36	42,43
15.	584	6,76	36,83	34,08	30,06	40,29	39,45	33,52
16.	187	2,16	29,88	31,74	27,72	32,04	35,75	29,82
17.	65	0,75	26,54	29,81	25,79	27,31	32,38	26,45
18.	193	2,23	26,34	28,12	24,10	27,06	30,62	24,69
19.	437	5,06	32,66	31,62	27,60	34,20	35,00	29,07
20.	593	6,86	35,56	32,72	28,70	38,62	37,66	31,73
21.	230	2,66	58,33	59,69	55,67	61,86	65,50	59,57
22.	200	2,31	60,03	61,74	57,72	65,08	69,13	63,20
23.	446	5,16	54,41	63,59	59,57	58,09	69,62	63,69
24.	680	7,87	51,04	62,93	58,91	54,24	68,47	62,54
25.	488	5,65	54,71	64,37	60,35	60,97	73,03	67,10
26.	265	3,07	72,20	79,28	75,26	77,39	87,08	81,15
27.	50	0,58	77,10	81,69	77,67	80,23	87,44	81,51
28.	435	5,03	96,12	105,17	101,15	104,32	116,41	110,48
29.	24	0,28	106,58	110,89	106,87	110,76	118,13	112,20
30.	1.114	12,89	125,64	142,55	138,53	130,73	151,20	145,27
31.	2.018	23,36	136,48	163,86	159,84	149,60	180,98	175,05
Σ	8.405	97,28	1.479,32	1.506,69	1.382,07	1.563,48	1.656,25	1.472,42

^{*} unbeeinflusst Mündung = unbeeinflusst Mülheim * 1,015

November 2022

Dezember 2022

Januar 2023

Datum	Villigst m³.s	Hattingen m³.s	Mülheim m³.s
1.	6,4	18,4	19,5
2.	6,5	17,3	18,7
3.	6,7	17,3	17,1
4.	7,0	18,5	18,2
5.	7,0	18,8	18,9
6.	6,9	19,1	18,7
7.	6,9	20,2	19,7
8.	6,9	19,8	20,6
9.	6,9	18,9	19,6
10.	7,0	19,0	19,8
11.	7,1	18,4	19,5
12.	7,1	17,6	18,5
13.	6,9	17,8	17,9
14.	6,7	17,4	17,3
15.	6,6	16,8	16,5
16.	6,8	17,2	17,0
17.	7,3	19,7	19,9
18.	8,0	22,4	23,5
19.	8,2	24,3	25,7
20.	8,4	26,1	27,6
21.	9,1	30,2	32,2
22.	9,2	32,1	34,2
23.	9,0	33,2	35,6
24.	8,8	34,9	38,1
25.	8,9	36,1	40,2
26.	8,2	34,4	38,2
27.	7,6	32,6	36,9
28.	7,4	31,1	35,1
29.	8,0	30,6	34,1
30.	8,0	29,5	32,6

Datum	Villigst m³.s	Hattingen m³.s	Mülheim m³.s
1.	7,9	28,5	31,1
2.	8,0	27,5	29,2
3.	7,9	26,5	27,9
4.	7,3	24,7	25,5
5.	7,3	24,1	25,7
6.	7,8	24,6	26,6
7.	8,3	26,0	26,8
8.	8,7	26,4	28,1
9.	9,4	29,1	31,2
10.	9,5	29,0	29,1
11.	9,0	29,0	27,6
12.	8,8	27,8	26,1
13.	8,4	27,4	24,3
14.	7,5	24,6	21,7
15.	7,2	23,6	21,3
16.	7,0	22,3	20,5
17.	6,6	21,2	20,6
18.	6,6	19,6	19,5
19.	6,9	20,1	19,3
20.	7,3	21,3	21,0
21.	7,4	22,0	22,5
22.	8,6	25,8	26,6
23.	11,2	35,2	37,1
24.	15,0	49,0	50,6
25.	18,9	62,4	63,4
26.	25,6	82,8	83,9
27.	31,8	102,2	103,4
28.	35,8	113,9	115,5
29.	37,4	118,6	122,0
30.	37,7	121,0	125,6
31.	35,2	118,2	123,0

Datum	Villigst m³.s	Hattingen m³.s	Mülheim m³.s
1.	31,8	114,1	119,0
2.	28,8	112,8	116,2
3.	26,9	110,8	113,6
4.	26,3	110,2	113,4
5.	26,4	112,1	116,3
6.	26,9	113,1	118,4
7.	27,8	113,7	120,6
8.	28,5	115,6	122,5
9.	29,7	120,7	127,2
10.	30,9	124,7	131,0
11.	33,2	138,4	142,7
12.	39,5	170,4	169,5
13.	56,9	250,8	247,3
14.	70,6	311,1	316,9
15.	84,0	367,8	379,9
16.	94,2	406,1	425,3
17.	98,6	410,4	438,6
18.	88,9	355,0	389,9
19.	80,2	309,5	338,0
20.	69,4	255,9	281,6
21.	59,5	206,7	228,6
22.	50,1	170,8	190,0
23.	43,0	144,8	161,3
24.	36,8	119,0	133,8
25.	31,8	100,3	111,5
26.	28,0	85,2	95,2
27.	25,2	72,5	80,8
28.	23,1	62,2	69,3
29.	21,8	58,4	64,2
30.	21,1	55,8	61,2
31.	21,2	55,7	60,3

Februar 2023

März 2023

April 2023

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	22,1	55,7	60,2
2.	34,1	80,5	79,8
3.	59,8	145,7	141,6
4.	80,3	200,0	198,6
5.	97,2	241,0	239,4
6.	111,5	277,2	274,6
7.	112,8	278,6	280,6
8.	98,6	234,5	241,6
9.	87,7	197,5	203,8
10.	77,0	167,2	175,4
11.	66,8	138,7	149,1
12.	58,1	117,6	129,2
13.	50,7	101,1	111,4
14.	44,4	87,6	96,3
15.	40,4	78,6	85,7
16.	37,2	72,1	78,1
17.	34,4	67,5	73,0
18.	32,7	64,4	69,9
19.	33,9	66,5	72,0
20.	37,2	71,6	77,1
21.	40,7	77,0	83,2
22.	44,2	82,4	88,6
23.	47,6	88,4	95,2
24.	48,8	89,8	97,0
25.	48,5	89,2	97,0
26.	48,0	87,7	95,3
27.	47,1	85,6	93,1
28.	45,4	82,4	89,1

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	43,0	78,0	84,0
2.	39,1	72,5	77,6
3.	35,0	66,5	71,7
4.	31,1	61,3	66,0
5.	27,7	55,7	60,1
6.	25,4	52,1	56,8
7.	25,9	52,4	57,3
8.	28,5	58,1	64,3
9.	35,0	70,8	77,4
10.	49,7	112,3	117,5
11.	71,1	173,4	182,2
12.	88,3	220,6	234,1
13.	100,8	255,1	269,2
14.	107,9	275,8	292,5
15.	105,9	266,1	287,7
16.	95,5	233,7	252,7
17.	86,3	208,0	224,7
18.	78,7	185,2	201,6
19.	71,9	166,6	181,9
20.	64,9	148,0	161,6
21.	57,6	128,9	142,8
22.	51,5	112,9	125,7
23.	47,0	103,1	114,6
24.	44,1	99,0	110,4
25.	42,2	97,5	109,3
26.	44,8	109,0	119,2
27.	50,0	130,5	140,5
28.	54,1	146,8	158,7
29.	57,2	156,0	167,6
30.	60,3	162,9	173,4
31.	60,8	159,8	171,4

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	61,6 67,7 73,5 78,8 82,2 81,4 76,6 71,8 66,3 61,3 57,2 52,8	162,1 187,8 209,4 225,3 234,9 225,5 196,7 175,8 158,3 144,7 135,3 125,4	171,9 196,6 219,3 237,6 248,3 241,6 213,2 192,5 173,2 158,5 148,2 136,8
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	73,5 78,8 82,2 81,4 76,6 71,8 66,3 61,3 57,2 52,8	209,4 225,3 234,9 225,5 196,7 175,8 158,3 144,7 135,3	219,3 237,6 248,3 241,6 213,2 192,5 173,2 158,5 148,2
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	78,8 82,2 81,4 76,6 71,8 66,3 61,3 57,2 52,8	225,3 234,9 225,5 196,7 175,8 158,3 144,7 135,3	237,6 248,3 241,6 213,2 192,5 173,2 158,5 148,2
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	82,2 81,4 76,6 71,8 66,3 61,3 57,2 52,8	234,9 225,5 196,7 175,8 158,3 144,7 135,3 125,4	248,3 241,6 213,2 192,5 173,2 158,5 148,2
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	81,4 76,6 71,8 66,3 61,3 57,2 52,8	225,5 196,7 175,8 158,3 144,7 135,3 125,4	241,6 213,2 192,5 173,2 158,5 148,2
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	76,6 71,8 66,3 61,3 57,2 52,8	196,7 175,8 158,3 144,7 135,3 125,4	213,2 192,5 173,2 158,5 148,2
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	71,8 66,3 61,3 57,2 52,8	175,8 158,3 144,7 135,3 125,4	192,5 173,2 158,5 148,2
9.	66,3 61,3 57,2 52,8	158,3 144,7 135,3 125,4	173,2 158,5 148,2
10. 11. 12. 13. 14. 15. 16. 17. 18.	61,3 57,2 52,8	144,7 135,3 125,4	158,5 148,2
11. 12. 13. 14. 15. 16. 17. 18. 19.	57,2 52,8	135,3 125,4	148,2
12. 13. 14. 15. 16. 17. 18.	52,8	125,4	,
13. 14. 15. 16. 17. 18. 19.			136,8
14. 15. 16. 17. 18.	48,8		1
15. 16. 17. 18.		116,3	125,9
16. 17. 18.	45,2	109,4	118,2
17. 18. 19.	41,9	103,1	110,9
18.	39,6	98,7	105,5
19.	36,8	94,0	101,4
	33,4	86,3	93,8
20.	30,8	79,9	87,3
	28,9	75,2	82,8
21.	26,9	70,7	78,3
22.	25,4	66,3	73,7
23.	24,6	64,8	71,8
24.	24,4	63,9	71,1
25.	24,1	63,6	72,1
26.	23,1	60,5	68,7
27.	22,2	58,0	65,6
28.	21,4	55,8	63,3
29.	20,1	53,4	60,7
30.	18,7	50,4	56,1

Mai 2023 Juni 2023 Juli 2023

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	17,6	47,9	53,0
2.	16,8	46,2	50,9
3.	16,0	44,1	48,4
4.	15,4	41,4	44,5
5.	15,6	40,2	42,7
6.	16,3	41,6	44,4
7.	17,3	42,5	45,0
8.	18,9	45,2	47,5
9.	22,0	50,2	52,2
10.	31,5	71,7	73,9
11.	38,9	91,0	94,3
12.	49,4	117,4	122,1
13.	59,6	141,5	147,8
14.	67,2	160,6	169,6
15.	65,7	159,3	170,9
16.	64,0	153,5	165,7
17.	57,3	135,6	148,3
18.	48,6	115,2	127,0
19.	40,5	96,3	106,7
20.	33,9	79,8	88,4
21.	29,2	67,4	74,1
22.	30,7	62,7	67,2
23.	34,9	67,7	72,2
24.	37,1	69,4	73,6
25.	38,7	70,4	74,6
26.	39,5	70,4	74,8
27.	35,1	67,0	71,4
28.	29,2	56,5	60,2
29.	25,7	50,8	53,9
30.	22,9	45,8	48,3
31.	20,6	41,8	43,7

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	18,9	38,9	40,5
2.	17,4	36,1	37,4
3.	16,1	33,0	34,2
4.	15,2	31,0	31,7
5.	14,3	29,6	30,4
6.	13,4	27,2	28,1
7.	12,4	25,8	26,3
8.	11,7	25,8	26,1
9.	10,7	25,0	25,4
10.	10,1	24,0	24,2
11.	9,4	23,7	24,2
12.	8,9	22,8	23,2
13.	8,7	21,5	21,9
14.	8,5	21,0	21,2
15.	8,7	20,4	20,6
16.	8,8	20,9	20,8
17.	9,0	20,4	20,7
18.	8,9	20,3	20,2
19.	8,9	20,1	20,2
20.	8,7	20,5	20,2
21.	10,3	20,8	20,4
22.	15,4	28,4	27,2
23.	28,1	51,4	54,2
24.	35,5	62,0	66,2
25.	40,1	68,1	73,3
26.	40,9	71,1	76,5
27.	37,4	67,0	73,0
28.	25,7	45,2	47,9
29.	19,3	36,2	37,6
30.	15,8	31,6	32,1

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	14,4	29,6	30,6
2.	13,3	27,4	28,6
3.	12,6	26,8	27,8
4.	12,0	25,4	25,9
5.	11,5	24,6	25,4
6.	11,3	24,6	25,0
7.	10,9	24,5	24,7
8.	10,6	23,7	23,8
9.	10,3	23,6	24,8
10.	9,6	24,0	25,5
11.	9,0	22,0	23,0
12.	9,0	21,8	22,9
13.	9,1	21,9	23,2
14.	9,3	22,4	22,6
15.	9,3	20,9	21,1
16.	9,2	21,4	21,5
17.	9,0	20,9	21,1
18.	8,9	20,7	20,6
19.	8,8	19,8	19,6
20.	9,6	21,8	22,0
21.	9,8	21,5	21,8
22.	9,9	21,6	21,6
23.	9,9	21,9	22,4
24.	10,2	23,1	24,4
25.	10,3	24,0	25,6
26.	10,8	25,0	26,8
27.	12,1	28,4	31,0
28.	13,2	32,4	35,8
29.	14,0	36,1	39,4
30.	14,1	37,3	41,1
31.	14,4	40,5	45,3

August 2023

September 2023

Oktober 2023

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	18,7	51,1	58,3
2.	22,7	59,2	66,9
3.	27,1	70,1	79,0
4.	32,5	85,1	94,2
5.	37,1	97,0	106,9
6.	38,2	99,8	108,5
7.	45,5	118,1	125,2
8.	52,9	137,3	144,4
9.	60,4	152,3	158,8
10.	67,2	163,6	171,2
11.	70,7	169,4	177,3
12.	68,6	160,5	169,1
13.	65,7	146,8	157,5
14.	60,0	129,7	140,8
15.	56,3	118,6	126,8
16.	53,7	113,6	121,4
17.	50,1	107,9	118,0
18.	46,0	100,2	108,5
19.	42,9	94,1	102,7
20.	38,7	87,3	97,4
21.	34,8	77,8	86,8
22.	31,3	68,6	75,4
23.	27,7	60,6	66,4
24.	25,1	55,0	59,2
25.	24,8	54,5	58,9
26.	24,2	55,7	61,3
27.	23,4	54,8	60,8
28.	23,1	55,1	60,8
29.	22,8	55,1	61,3
30.	20,8	50,7	56,2
31.	20,6	49,2	53,4

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	21,4	50,7	54,4
2.	22,6	55,0	59,3
3.	23,5	58,2	62,3
4.	23,8	60,8	65,2
5.	22,7	59,3	63,8
6.	21,3	57,4	61,3
7.	19,4	52,4	55,3
8.	18,0	48,4	51,4
9.	16,9	45,3	47,4
10.	16,1	42,6	44,1
11.	15,4	40,7	42,3
12.	15,0	39,1	41,2
13.	21,2	48,4	48,7
14.	24,2	54,3	56,2
15.	26,1	57,9	60,4
16.	27,5	60,2	62,9
17.	28,5	62,2	64,6
18.	22,7	53,6	57,3
19.	20,5	48,8	51,0
20.	19,0	45,3	47,4
21.	18,5	42,9	44,7
22.	19,1	44,6	47,0
23.	19,0	44,3	46,3
24.	18,4	42,5	44,8
25.	18,2	42,0	43,7
26.	17,3	40,9	42,4
27.	15,6	35,9	36,8
28.	14,5	33,2	34,1
29.	13,7	31,9	32,3
30.	13,2	31,5	32,2

Datum	Villigst m³/s	Hattingen m³/s	Mülheim m³/s
1.	12,7	30,9	31,5
2.	12,3	30,5	30,8
3.	12,7	30,7	31,2
4.	13,3	31,9	32,6
5.	13,1	31,0	31,7
6.	13,2	29,9	30,6
7.	13,1	29,5	30,5
8.	12,3	28,2	29,0
9.	11,5	25,5	26,0
10.	11,3	24,9	25,0
11.	11,0	24,5	24,6
12.	11,0	24,1	23,7
13.	11,2	24,8	25,0
14.	12,8	29,1	30,6
15.	13,7	31,3	33,5
16.	14,0	32,8	35,5
17.	14,0	33,2	36,3
18.	13,7	33,0	35,7
19.	12,5	30,4	32,2
20.	12,4	30,2	31,8
21.	14,8	35,9	37,8
22.	16,7	42,6	45,4
23.	18,0	48,2	51,6
24.	18,8	51,9	55,6
25.	19,7	55,7	60,0
26.	19,3	58,5	63,2
27.	20,3	61,9	66,2
28.	22,6	70,2	75,4
29.	25,5	81,3	86,7
30.	28,5	95,5	100,7
31.	31,9	108,4	115,1

Verzeichnis der zuschusspflichtigen Tage nach dem RuhrVG

November 2022

	Durchfluss		Zuschuss	
Datum	der Ruhr in Villigst ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz
	m³/s	m³/s	m³/s	m³/s
1.	5,49	1,01	1,12	0,11
2.	4,49	2,01	2,44	0,43
3.	4,90	1,60	2,18	0,58
4.	5,32	1,18	2,40	1,22
5.	5,44	1,06	1,44	0,38
6.	3,16	3,34	2,96	-0,38
7.	4,62	1,88	2,22	0,34
8.	3,48	3,02	3,34	0,32
9.	4,15	2,35	3,83	1,48
10.	4,41	2,09	2,67	0,58
11.	3,81	2,69	3,00	0,31
12.	3,12	3,38	3,62	0,24
13.	3,03	3,47	2,87	-0,60
14.	2,16	4,34	4,75	0,41
15.	3,55	2,95	3,14	0,19
16.	4,44	2,06	3,18	1,12
17.	6,24	0,26	3,11	2,85
20.	4,63	1,87	2,74	0,87
Σ		40,57	51,02	10,45

Villigst: 18 zuschusspflichtige Tage

November 2022

	Durchfluss		Zuschuss	
Datum	der Ruhr an der Mündung ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz
	m³/s	m³/s	m³/s	m³/s
8.	10,80	2,20	6,13	3,93
11.	11,33	1,67	5,78	4,11
12.	10,68	2,32	4,72	2,41
13.	12,75	0,25	5,09	4,84
14.	9,58	3,42	6,24	2,82
15.	11,89	1,11	5,35	4,24
16.	12,41	0,59	6,85	6,27
Σ		11,55	40,16	28,61

Hattingen: 7 zuschusspflichtige Tage

November 2022

	Durchfluss der Ruhr an		Zuschuss	
Datum	der Mündung ohne Talsperreneinfluss	erforder- lich	geleistet	Differenz
	m³/s	m³/s	m³/s	m³/s
3.	11,68	1,32	1,96	0,64
8.	11,57	1,43	6,13	4,70
11.	12,00	1,00	5,78	4,78
12.	10,84	2,16	4,72	2,56
13.	9,59	3,41	5,09	1,68
14.	8,86	4,14	6,24	2,10
15.	11,60	1,40	5,35	3,95
Σ		14,86	35,27	20,41

Mündung: 7 zuschusspflichtige Tage

Verzeichnis der zuschusspflichtigen Tage nach dem RuhrVG

In Spalte Differenz: Rote Zahlen: Minderabgabe Schwarze Zahlen: Mehrabgabe

Dezember 2022

Durchfluss der Ruhr in		Zuschuss			
Datum	Villigst ohne Talsperreneinfluss	erforder- lich	geleistet	Differenz	
	m³/s	m³/s	m³/s	m³/s	
16.	6,18	0,32	0,65	0,33	
17.	5,84	0,66	0,16	-0,50	
18.	5,97	0,53	1,20	0,67	
Σ		1,51	2,01	0,50	

Villigst: 3 zuschusspflichtige Tage

Dezember 2022

Hattingen: 0 zuschusspflichtige Tage

Dezember 2022

	Durchfluss der Ruhr an		Zuschuss	
Datum	der Mündung ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz
	m³/s	m³/s	m³/s	m³/s
18.	14,69	0,31	1,16	0,85
Σ		0,31	1,16	0,85

Mündung: 1 zuschusspflichtiger Tag

Januar 2023 Januar 2023 Januar 2023

Villigst: 0 zuschusspflichtige TageHattingen: 0 zuschusspflichtige TageMündung: 0 zuschusspflichtige Tage

Februar 2023 Februar 2023 Februar 2023

Villigst: 0 zuschusspflichtige Tage Hattingen: 0 zuschusspflichtige Tage Mündung: 0 zuschusspflichtige Tage

März 2023 März 2023 März 2023 März 2023

Villigst: 0 zuschusspflichtige Tage Hattingen: 0 zuschusspflichtige Tage Mündung: 0 zuschusspflichtige Tage

 April 2023
 April 2023
 April 202

Villigst: 0 zuschusspflichtige Tage Hattingen: 0 zuschusspflichtige Tage Mündung: 0 zuschusspflichtige Tage

Mai 2023 Mai 2023 Mai 2023

Villigst: 0 zuschusspflichtige Tage Hattingen: 0 zuschusspflichtige Tage Mündung: 0 zuschusspflichtige Tage

Juni 2023

	Durchfluss der Ruhr in	Zuschuss			
Datum	Villigst ohne Talsperreneinfluss	erforder- lich	geleistet	Differenz	
	m³/s	m³/s	m³/s	m³/s	
9.	6,73	1,67	2,12	0,45	
10.	7,42	0,98	1,54	0,56	
11.	5,78	2,62	2,22	-0,40	
12.	5,34	3,06	2,48	-0,58	
13.	4,98	3,42	4,65	1,23	
14.	2,77	5,63	5,51	-0,12	
15.	5,11	3,29	4,69	1,40	
16.	2,99	5,41	5,25	-0,16	
17.	3,62	4,78	5,50	0,72	
18.	3,64	4,76	5,50	0,74	
19.	1,65	6,75	6,47	-0,28	
20.	2,70	5,70	6,13	0,43	
Σ		48,07	52,06	3,99	

Villigst: 12 zuschusspflichtige Tage

Juni 2023

	Durchfluss der Ruhr in		Zuschuss	
Datum	Hattingen	erforder- lich	geleistet	Differenz
	m³/s	m³/s	m³/s	m³/s
15.	12,70	2,30	5,83	3,54
16.	11,65	3,35	10,49	7,14
17.	7,23	7,77	9,59	1,82
18.	10,70	4,30	10,10	5,80
19.	9,94	5,06	10,45	5,39
20.	10,32	4,68	10,50	5,82
21.	12,54	2,46	11,45	8,99
Σ		29,91	68,41	38,51

Hattingen: 7 zuschusspflichtige Tage

Juni 2023

	Durchfluss	Zuschuss				
Datum	der Ruhr an der Mündung ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
14.	14,79	0,21	5,87	5,66		
15.	13,24	1,76	5,83	4,07		
16.	11,11	3,89	10,49	6,60		
17.	8,21	6,79	9,59	2,80		
18.	7,82	7,18	10,10	2,93		
19.	10,08	4,92	10,45	5,53		
20.	8,82	6,18	10,50	4,32		
21.	11,33	3,67	11,45	7,77		
Σ		34,61	74,28	39,67		

Mündung: 8 zuschusspflichtige Tage

Juli 2023

	Durchfluss der Ruhr in	Zuschuss				
Datum	Villigst		geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
3.	8,16	0,24	2,56	2,32		
4.	7,17	1,23	3,02	1,79		
7.	6,59	1,81	2,89	1,08		
8.	6,76	1,64	2,31	0,67		
9.	5,22	3,18	3,51	0,33		
10.	3,86	4,54	4,90	0,36		
11.	5,06	3,34	3,98	0,64		
12.	4,94	3,46	3,46 4,46			
13.	4,41	3,99	4,95	0,96		
14.	6,31	2,09	3,52	1,43		
15.	4,58	3,82	4,24	0,42		
16.	4,48	3,92	4,14	0,22		
17.	3,49	4,91	4,93	0,02		
18.	2,85	5,55	5,82	0,27		
19.	4,28	4,12	5,43	1,31		
20.	5,14	3,26	7,47	4,21		
21.	5,47	2,93	4,20	1,27		
22.	4,59	3,81	4,26	0,45		
23.	3,79	4,61	5,08	0,47		
24.	3,10	5,30	8,12	2,82		
26.	7,88	0,52	4,02	3,50		
Σ		68,27	93,81	25,54		

Villigst: 21 zuschusspflichtige Tage

Juli 2023

Durchfluss Zuschuss					
Datum	der Ruhr in Hattingen ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz	
	m³/s	m³/s	m³/s	m³/s	
9.	12,01	2,99	8,72	5,73	
11.	10,13	4,87	8,33	3,47	
12.	13,24	1,76	9,00	7,24	
13.	12,18	2,82	8,12	5,31	
14.	12,49	2,51	10,54	8,03	
15.	10,00	5,00	9,25	4,24	
16.	12,06	2,94	8,97	6,03	
17.	10,40	4,60	9,54	4,94	
18.	11,39	3,61	8,28	4,67	
19.	7,71	7,29	10,43	3,14	
21.	7,57	7,43	12,07	4,64	
22.	6,42	8,58	14,12	5,54	
23.	11,25	3,75	9,66	5,91	
26.	11,39	3,61	13,36	9,75	
Σ		61,74	140,39	78,65	

Hattingen: 14 zuschusspflichtige Tage

Juli 2023

JUII 2023 -	1					
	Durchfluss	Zuschuss				
Datum	der Ruhr an der Mündung ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
8.	14,46	0,54	4,76	4,22		
11.	8,68	6,32	8,33	2,02		
12.	13,71	1,29	9,00	7,71		
13.	12,49	2,51	8,12	5,61		
14.	11,36	3,64	10,54	6,90		
15.	10,88	4,12	9,25	5,13		
16.	10,41	4,59	8,97	4,38		
17.	11,24	3,76	9,54	5,78		
18.	10,11	4,89	8,28	3,39		
19.	6,38	8,62	10,43	1,81		
21.	6,54	8,46	12,07	3,61		
22.	5,29	9,71	14,12	4,41		
23.	12,90	2,10	9,66	7,57		
26.	11,17	3,83	13,36	9,52		
Σ		64,39	136,44	72,05		

Mündung: 14 zuschusspflichtige Tage

Verzeichnis der zuschusspflichtigen Tage nach dem RuhrVG

In Spalte Differenz: Rote Zahlen: Minderabgabe Schwarze Zahlen: Mehrabgabe

August 2023

August 2023

August 2023

Villigst: 0 zuschusspflichtige Tage

Hattingen: 0 zuschusspflichtige Tage

Mündung: 0 zuschusspflichtige Tage

September 2023

Durchfluss Zuschuss der Ruhr in Villigst Datum erforderohne geleistet Differenz lich Talsperreneinfluss m³/s m³/s m³/s m³/s 11. 7,95 0,45 6,11 5,66 27. 7,74 5,54 0,66 6,20 28. 8,22 0,18 4,42 4,24 7,05 29. 1,35 5,30 3,95 30. 8,26 0,14 4,97 4,83 Σ 2,78 27,00 24,22

September 2023

Hattingen: 0 zuschusspflichtige Tage

September 2023

Mündung: 0 zuschusspflichtige Tage

Villigst: 5 zuschusspflichtige Tage

Oktober 2023

	Durchfluss der Ruhr in	Zuschuss				
Datum	Villigst ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
1.	6,32	2,08	5,15	3,07		
2.	6,87	1,53	4,71	3,18		
5.	8,04	0,36	3,97	3,61		
6.	7,28	1,12	4,49	3,37		
7.	7,22	1,18	4,18	3,00		
8.	6,18	2,22	4,84	2,62		
9.	6,92	1,48	4,38	2,90		
10.	6,31	2,09	4,57	2,48		
11.	5,36	3,04	5,05	2,01		
12.	6,00	2,40	5,21	2,81		
Σ		17,49	46,54	29,05		

Villigst: 10 zuschusspflichtige Tage

Oktober 2023

	Durchfluss der Ruhr an	Zuschuss				
Datum	der Hattingen ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
8.	13,55	1,45	10,07	8,62		
11.	11,54	3,46	10,25	6,80		
Σ		4,90	20,32	15,42		

Hattingen: 2 zuschusspflichtige Tage

Oktober 2023

	Durchfluss der Ruhr an	Zuschuss				
Datum	der Mündung ohne Talsperren- einfluss	erforder- lich	geleistet	Differenz		
	m³/s	m³/s	m³/s	m³/s		
8.	12,90	2,10	10,07	7,97		
11.	11,28	3,72	10,25	6,53		
12.	13,64	1,36	8,94	7,58		
Σ		7,18	29,26	22,08		

Mündung: 3 zuschusspflichtige Tage

Nach dem RuhrVG erforderlicher Zuschuss – monatsweise Zusammenstellung

Pegel Villigst Abflussjahr 2023

	r	n³/s x Anzahl der Tage	!	Mio. m ³			zuschuss-
Monat	Zuscl	nuss		Zusc	huss		pflichtige
	erforderlich	geleistet	Differenz	erforderlich	geleistet	Differenz	Tage
November	40,57	51,02	10,45	3,51	4,41	0,90	18
Dezember	1,51	2,01	0,50	0,13	0,17	0,04	3
Januar	-	-	-	-	-	-	-
Februar	-	-	-	-	-	-	-
März	-	-	-	-	-	-	-
April	-	-	-	-	-	-	-
Mai	-	-	-	-	-	-	-
Juni	48,07	52,06	3,99	4,15	4,50	0,34	12
Juli	68,27	93,81	25,54	5,90	8,11	2,21	21
August	-	-	-	-	-	-	-
September	2,78	27,00	24,22	0,24	2,33	2,09	5
Oktober	17,49	46,54	29,05	1,51	4,02	2,51	10
Summe	178,69	272,44	93,75	15,44	23,54	8,10	69

Pegel Hattingen Abflussjahr 2023

	n	m³/s x Anzahl der Tage		Mio. m³			zuschuss-
Monat	Zusch		D://	Zusc	1	D:((pflichtige Tage
	erforderlich	geleistet	Differenz	erforderlich	geleistet	Differenz	
November	11,55	40,16	28,61	1,00	3,47	2,47	7
Dezember	-	-	-	-	-	-	-
Januar	-	-	-	-	-	-	-
Februar	-	-	-	-	-	-	-
März	-	-	-	-	-	-	-
April	-	-	-	-	-	-	-
Mai	-	-	-	-	-	-	-
Juni	29,91	68,41	38,51	2,58	5,91	3,33	7
Juli	61,74	140,39	78,65	5,33	12,13	6,80	14
August	-	-	-	-	-	-	-
September	-	-	-	-	-	-	-
Oktober	4,90	20,32	15,42	0,42	1,76	1,33	2
Summe	108,11	269,29	161,19	9,34	23,27	13,93	30

Ruhrmündung Abflussjahr 2023

	r	m³/s x Anzahl der Tage		Mio. m³			zuschuss-
Monat	Zusch	huss		Zuso	chuss		pflichtige Tage
	erforderlich	geleistet	Differenz	erforderlich	geleistet	Differenz	lage
November	14,86	35,27	20,41	1,28	3,05	1,76	7
Dezember	0,31	1,16	0,85	0,03	0,10	0,07	1
Januar	-	-	-	-	-	-	-
Februar	-	-	-	-	-	-	-
März	-	-	-	-	-	-	-
April	-	-	-	-	-	-	-
Mai	-	-	-	-	-	-	-
Juni	34,61	74,28	39,67	2,99	6,42	3,43	8
Juli	64,39	136,44	72,05	5,56	11,79	6,22	14
August	-	-	-	-	-	-	-
September	-	-	-	-	-	-	-
Oktober	7,18	29,26	22,08	0,62	2,53	1,91	3
Summe	121,34	276,40	155,06	10,48	23,88	13,40	33

Unbeeinflusster Abfluss an der Ruhrmündung

Monat	2023 Mittelwerte des Abflusses m³/s	2023 Summen des Abflusses Mio. m³	1927/2022 mittlere Summen des Abflusses Mio. m³
November	32,8	85,0	229,0
Dezember	67,6	181,1	339,5
Januar	202,0	541,0	385,0
Februar	154,0	372,6	316,6
März	164,0	439,3	308,8
April	131,0	339,6	229,9
Mai	87,4	234,1	135,7
Juni	34,3	88,9	108,7
Juli	25,8	69,1	119,4
August	110,0	294,6	104,8
September	46,9	121,6	103,0
Oktober	53,4	143,0	142,8
Winter	125,2	1.958,5	1.808,9
Sommer	59,8	951,3	714,5
Jahr	92,2	2.909,8	2.523,4

Abflussjahr	Jahresmittel- wert des Abflusses	Abflussjahr	Jahresmittel- wert des Abflusses
	m³/s		m³/s
1927	104,0	1976	50,2
1928	62,5	1977	62,5
1929	52,7	1978	87,2
1930	73,2	1979	81,8
1931	103,0	1980	97,2
1932	73,4	1981	106,0
1933	52,6	1982	91,3
1934	43,9	1983	90,0
1935	75,5	1984	107,0
1936	72,9	1985	78,0
1937	90,4	1986	90,5
1938	61,8	1987	106,0
1939	80,5	1988	101,0
1940	83,0	1989	75,5
1941	105,0	1990	67,4
1942	70,2	1991	61,8
1943	55,2	1992	76,3
1944	86,2	1993	91,8
1945	87,3	1994	115,0
1946	81,5	1995	114,4
1947	42,4	1996	42,9
1948	106,0	1997	67,3
1949	44,6	1998	98,2
1950	67,3	1999	97,7
1951	75,4	2000	95,9
1952	67,9	2001	78,9
1953	68,2	2002	110,7
1954	71,0	2003	76,6
1955	84,8	2004	81,3
1956	94,1	2005	91,6
1957	98,4	2006	77,8
1958	100,0	2007	115,2
1959	48,4	2008	94,6
1960	67,4	2009	72,5
1961	122,0	2010	83,3
1962	96,3	2011	82,3
1963	49,2	2012	75,5
1964	41,6	2013	65,8
1965	110,0	2014	62,1
1966	124,0	2015	67,9
1967	109,0	2016	80,3
1968	108,0	2017	56,3
1969	64,9	2018	71,5
1970	105,0	2019	62,9
1971	59,9	2020	69,6
1972	52,4	2021	69,1
1973	56,3	2022	69,9
1974 1975	80,4 88,1	2023	92,2
	ahresreihe 1927/2023	= 97 Jahre	80,2

Gemessener Abfluss am Pegel Villigst

Monat	2023 Mittelwerte des Abflusses m³/s	2023 Summen des Abflusses Mio. m ³	1951/2022 mittlere Summen des Abflusses Mio. m³
November	7,7	19,8	66,9
Dezember	15,1	40,4	103,4
Januar	43,2	115,7	124,5
Februar	58,3	141,0	102,3
März	58,4	156,4	107,7
April	42,8	110,9	79,1
Mai	34,1	91,3	50,9
Juni	16,3	42,2	46,1
Juli	10,8	28,9	52,0
August	40,3	107,9	46,1
September	19,2	49,8	43,5
Oktober	17,2	46,1	51,2
Winter	37,4	584,9	584,9
Sommer	23,0	365,6	289,3
Jahr	30,2	952,4	873,5

Abflussjahr	Jahresmittel- wert des Abflusses	Abflussjahr	Jahresmittel- wert des Abflusses
	m³/s		m³/s
1951	24,6	1988	36,4
1952	20,9	1989	25,3
1953	25,1	1990	22,1
1954	22,6	1991	17,8
1955	34,3	1992	23,4
1956	38,7	1993	29,8
1957	34,7	1994	41,6
1958	33,2	1995	39,8
1959	16,8	1996	11,6
1960	18,7	1997	24,1
1961	47,5	1998	30,7
1962	33,6	1999	36,2
1963	16,1	2000	29,9
1964	11,9	2001	23,6
1965	34,7	2002	39,1
1966	41,2	2003	28,0
1967	36,1	2004	24,9
1968	34,3	2005	34,0
1969	24,5	2006	28,7
1970	35,4	2007	39,1
1971	20,3	2008	34,5
1972	13,4	2009	26,3
1973	18,7	2010	26,3
1974	23,6	2011	29,2
1975	30,7	2012	24,0
1976	17,3	2013	21,5
1977	14,6	2014	18,7
1978	27,0	2015	23,2
1979	27,5	2016	25,6
1980	31,1	2017	17,3
1981	36,6	2018	26,7
1982	34,0	2019	20,7
1983	26,8	2020	22,5
1984	31,3	2021	19,0
1985	26,0	2022	24,5
1986	30,9	2023	30,2
1987	37,5		
Mittel der J	ahresreihe 1951/2023	= 73 Jahre	27,8

Gemessener Abfluss am Pegel Hattingen

Monat	2023	2023	1968/2022
	Mittelwerte	Summen	mittlere Summen
	des Abflusses	des Abflusses	des Abflusses
	m³/s	Mio. m³	Mio. m³
November	24,4	63,2	178,6
Dezember	49,0	131,2	275,9
Januar	166,0	444,6	334,8
Februar	124,0	300,0	261,3
März	140,0	375,0	267,6
April	112,0	290,3	179,1
Mai	76,5	204,9	116,2
Juni	32,4	84,0	99,8
Juli	25,9	69,4	110,4
August	94,1	252,0	101,2
September	46,4	120,3	101,3
Oktober	47,7	127,8	126,7
Winter	103,0	1.610,8	1.496,6
Sommer	54,0	858,5	655,0
Jahr	78,1	2.463,0	2.153,9

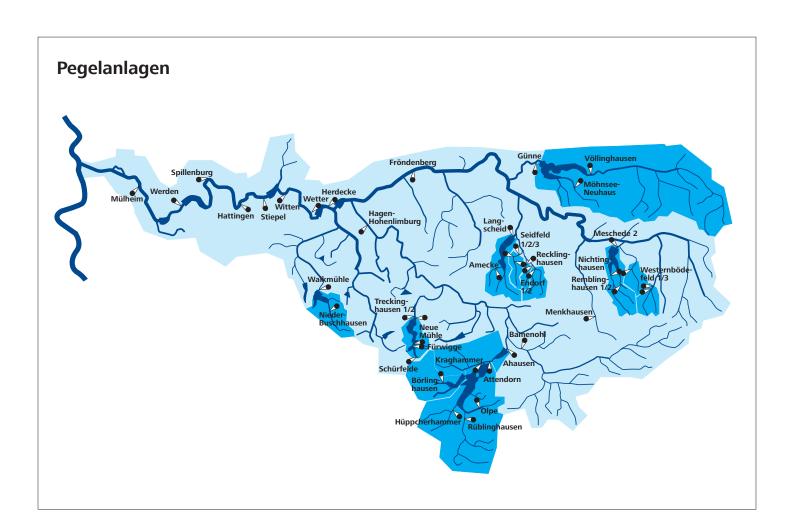
Abflussjahr	Jahresmittel- wert des Abflusses m³/s	Abflussjahr	Jahresmittel- wert des Abflusses m³/s
1968	90,4	1996	32,7
1969	55,9	1997	59,0
1970	87,8	1998	81,8
1971	52,4	1999	86,9
1972	36,5	2000	77,6
1973	47,9	2001	64,8
1974	63,1	2002	93,7
1975	77,3	2003	65,8
1976	42,1	2004	64,2
1977	44,3	2005	78,2
1978	70,5	2006	69,3
1979	69,1	2007	93,2
1980	80,5	2008	77,1
1981	89,6	2009	58,4
1982	80,9	2010	68,4
1983	74,9	2011	70,5
1984	87,7	2012	64,1
1985	68,0	2013	56,4
1986	75,6	2014	49,8
1987	88,1	2015	59,3
1988	88,2	2016	67,9
1989	64,6	2017	44,9
1990	56,2	2018	65,5
1991	50,3	2019	51,0
1992	62,0	2020	59,9
1993	77,0	2021	55,3
1994	99,9	2022	60,3
1995	97,9	2023	78,1
Mittel der J	ahresreihe 1968/2023	= 56 Jahre	68,4

Gemessener Abfluss am Pegel Mülheim

Mona	at	2023 Mittelwerte des Abflusses m³/s	2023 Summen des Abflusses Mio. m³
Nove Deze Janua Febru März April	ar Jar	25,9 49,9 176,0 129,0 151,0 121,0	67,1 133,7 471,4 312,1 404,4 313,6
Mai Juni Juli Augu Septe Oktol	ember	81,6 33,4 27,4 102,0 48,6 50,4	218,6 86,6 73,4 273,2 126,0 135,0
Winte Somr Jahr		109,0 57,3 83,0	1.704,6 910,9 2.617,5

	Jahresmittel-
A la fluora in la v	wert des
Abflussjahr	Abflusses
	m³/s
1991	51,0
1992	62,9
1993	78,6
1994	106,0
1995	104,0
1996	32,0
1997	58,2
1998	83,7
1999	92,7
2000	82,3
2001	68,5
2002	102,0
2003	70,8
2004	69,1
2005	83,7
2006	72,5
2007	104,0
2008	88,0
2009	66,4
2010	73,4
2011	75,7
2012	68,1
2013	59,8
2014	52,5
2015	63,3
2016	73,4
2017	47,0
2018	69,6
2019	53,6
2020	63,9
2021	58,6
2022	65,3
2023	83,0
Mittel 1991/2023	72,2

Die Pegel entlang der Ruhr, hier der Pegel Mülheim, liefern wichtige Daten für die Talsperrensteuerung im Ruhreinzugsgebiet. The gauging stations along the Ruhr, here gauging station Mülheim, provides important data for the management of the reservoirs in the Ruhr catchment area.


Pegelanlagen, Regenmessstationen

Pegelanlagen des Ruhrverbands im Einzugsgebiet der Ruhr

								L	angjährige I	Hauptwerte		Be-
Kennziffer (LANUV)	Pegelname	Gewässer	Aus- stattung	Pegel- nullpunkt	Höhen-	Einzugs- gebiet	Beobachtung	Jahres- reihe	NQ	MQ	HQ	mer- kun-
(LANOV)			Stattung	(PNP)	einheit	(AEo) km²	seit	von bis	m³/s	m³/s	m³/s	gen
2766495000100	Ahausen	Bigge	L,S,D,Fd,Fk	234,763	müNHN	359,50	25.7.1938	1968/2023	0,040	8,250	137,000	1)
2761885000100	Amecke	Sorpe	L,S,D,Fd,Fk	283,758	müNHN	28,71	15.9.1949	1961/2023	0,027	0,513	20,500	
2766491000100	Attendorn	Bigge	L,S,D,Fd,Fk	251,924	müNHN	332,23	29.6.1966	1968/2023	0,060	8,240	124,000	1)
2766390000100	Bamenohl	Lenne	L,S,D,Fd	233,999	müNHN	453,09	1.11.1971	1973/2023	0,387	9,260	199,000	
2766465000100	Börlinghausen	Lister	L,S,D,Fd	327,034	müNHN	47,98	23.5.1967	1961/2023	0,051	1,450	63,300	5)
2761831000100	Endorf 1	Röhr	Ls,S,R,Fd	293,260	müNHN	26,07	1.11.1954	1961/2023	0,000	0,221	21,600	2)
2761831000200	Endorf 2	Röhr	Ls,S,D,Fd	293,593	müNHN	25,76	19.5.1960					
2769730000200	Essen-Werden	Ruhr	L,S,Ud,Fd	42,684	müNHN	4336,55	1.7.2000	2002/2020	7,080	68,000	806,000	1)
2765190000100	Fröndenberg	Ruhr	L,S,D,Ud,Fd	113,202	müNHN	1914,47	1.11.1998					1)
2766811000100	Fürwigge	Verse	L,S,R,P,Fd	412,256	müNHN	4,62	1.11.1991	1995/2023	0,006	0,118	7,560	1)
2762715000100	Günne	Möhne	L,S,D,A,Fd,Fk	175,087	müNHN	440,14	10.7.1953	1961/2023	0,190	6,240	85,100	1)
2766993000100	Hagen-Hohenlimburg	Lenne	L,S,D,A,Fd	107,481	müNHN	l	1.11.1978	1978/2023	2,840	28,200	542,000	1)
2769510000100	Hattingen	Ruhr	L,S,D,R,A,C,Fd	60,384		4117,94	19.9.1963	1968/2023	9,790	68,400	1230,000	1
2769131000100	Herdecke	Ruhr	L,S,Ud,Fd	88,473	müNHN		1.11.2006		,	,		1)
2766449000100	Hüppcherhammer	Brachtpe	L,S,D,R,Fd	312,812	müNHN	47,22	18.3.1966	1967/2023	0,009	1,210	37,300	
2766487000100	Kraghammer	Ihne	L,S,D,Fd,Fk	275,151	müNHN	37,62	29.10.1937	1964/2023	0,020	1,010	53,400	1)
2761889000100	Langscheid	Sorpe	L,S,D,Fd,Fk	215,462	müNHN	53,10	1.11.1929	1961/2023	0,008	1,350	20,400	1) 4)
2761630000100	Menkhausen	Wenne	L,S,P,R,Fd	327,131	müNHN	44,09	24.7.1939	1961/2023	0,010	0,901	30,300	' '
2761450000100	Meschede 2	Henne	L,S,D,Fd,Fk	266,220	müNHN	55,64	24.1.1957	1961/2023	0,000	1,690	30,100	1) 4)
2762670000100	Möhnesee-Neuhaus	Heve	L,S,D,Fd,Fk	234,904	müNHN	65,60	28.8.1939	1961/2023	0,000	1,030	93,100	', ',
2769990000100	Mülheim	Ruhr	L,S,D,UI,A,Fd	28,251	müNHN	4420,00	1.11.1990	1991/2023	7,050	72,200	1270,000	1)
2766813000200	Neue Mühle	Verse	L,D,Fd	390,249	müNHN	10,95	8.8.1977	1961/2023	0,000	0,301	11,300	1) 5)
2761433000100	Nichtinghausen	Henne	L,S,R,Fd	327,769	müNHN	37,17	17.4.1953	1961/2023	0,010	0,710	22,900	1, 3,
2768831000100	Nieder-Buschhausen	Ennepe	L,S,D,Fd	313,937	müNHN	26,54	1.11.1989	1990/2023	0,010	0,655	36,100	
2766429000100	Olpe	Olpebach	L,S,D,Fd	312,216	müNHN	34,61	1.7.1994	1967/2023	0,007	0,728	34,700	5)
2761832000100	Recklinghausen	Bönkhauser Bach	L,3,ν,Γu ι	290,040	müNHN	5,80	1.11.1962	190772023	0,000	0,726	34,700)
2761440000100	Remblinghausen 1	Horbach	L,S,D,Fd	366,026	müNHN	43,30	6.12.1956	1961/2023	0,000	0,732	14,800	3)
2761440000100	Remblinghausen 2	kleine Henne	L,3,D,Fd Ls,S,R,Fd	361,513	müNHN	20,49	1.11.1950	1961/2023	0,000	0,732	11,700	3)
	_					l						3)
2766419000100	Rüblinghausen Schürfelde	Bigge	L,S,D,Fd	310,111	müNHN	86,00	19.10.1964	1966/2023	0,037	2,130	61,100	
2766811000200		Schürfelder Becke		439,235	müNHN	1,23	5.1.1996	2002/2023	0,000	0,030	1,450	
2761845000300	Seidfeld 1	Settmecke	Ls,S,D,Fd	288,270	müNHN	11,29	1.1.1960					
2761846000100	Seidfeld 2	Hermessiepen	C D E 4 E 1	287,019	müNHN	2,00	1.1.1960	10(1/2022	0.000	0.456	10.000	2/
2761845000200	Seidfeld 3	Settmecke	L,S,D,Fd,Fk	284,484	müNHN	47,70		1961/2023	0,000	0,456	10,900	2)
2769570000100	Spillenburg	Ruhr	L,S,Ud,Fd,Fk	51,017		4170,00	1.11.2004					1)
2769310000100	Stiepel	Ruhr	L,S,D,UI,Fd,Ff	68,012		4047,25	1.11.2006	4004:			10.55	1)
2766831000100	Treckinghausen 1	Verse	L,S,D,Fd,Fk	338,782	müNHN	23,81	8.7.1983	1984/2023	0,010	0,393	10,100	1)
2766832000100	Treckinghausen 2	Ölbach	L,S,D,Fd,Fk	337,357	müNHN	1,56	4.10.1982	1983/2023	0,002	0,038	4,110	
2762550000100	Völlinghausen	Möhne	L,S,D,Fd,Fk	213,652	müNHN	293,46	8.6.1936	1961/2023	0,334	4,240	103,000	
2768851000100	Walkmühle	Ennepe	L,S,P,R,A,Fd	268,424	müNHN	48,22	1.11.1996	1999/2023	0,074	0,900	37,900	1
2761229000600	Westernbödefeld 1	Brabecke	L,S,D,Ff	429,118	müNHN	23,61	8.10.1981	1961/2023	0,013	0,570	21,900	5)
2761229000200	Westernbödefeld 2 - Stollen*	Brabecke	R,S,Fd		müNHN	23,94	26.3.2015					
2761229000400	Westernbödefeld 3	Brabecke	L,S,R,Ff	422,189	müNHN	24,12	1.11.1988	1989/2023	0,014	0,164	9,260	ı
2769133000200	Wetter	Ruhr	L,S,D,A,C,Fd	79,735		3908,06	30.9.1962	1968/2023	11,000	65,200	1010,000	1)
2769191000100	Witten	Ruhr	L,S,D,Ud,Fd,Ff	65,517	müNHN	3975,34	1.11.2005				ovember 2	1)

^{*} vorher Westernbödefeld 2 (bis September 2012)

Stand: November 2023

Ausstattung:

= Lattenpegel

= Lattenpegel und Schreibpegel = Pneumatikpegel = Pneumatik-Schreibpegel = Druckmessdose = magnetisch induktiv

Ps

D M

= magnetisch-induktiv

R U = Raďar

= Ultraschall = Ultraschall (Doppler)

= Ultraschall (Laufzeit) = Ansagegerät

= Webcam

= digitale Speicherung

= Fernübertragung (DFÜ) = Fernübertragung (Kabel)

= Fernübertragung (Funk)

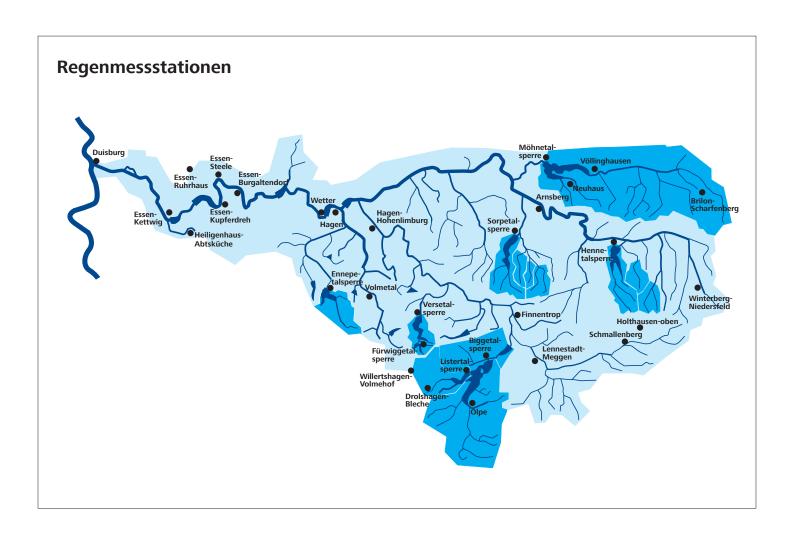
- 1) Von Talsperren beeinflusst
- 2) Größtmögliches Einzugsgebiet; Ermittlung von Abflussspenden nicht möglich, da keine Aufteilung in übergeleitete und weitergeleitete Wassermengen möglich.
- 3) Größtmögliches Einzugsgebiet; Zur Ermittlung von Abflussspenden ist ggf. je nach Überleitungsmengen eine Abminderung erforderlich.
- 4) Einzugsgebietsangabe ohne Beileitung
- 5) Jahresreihe einschließlich Vorgängerpegel

Regenmessstationen des Ruhrverbands im Einzugsgebiet der Ruhr

Stationsname	Teileinzugs- gebiet Nr.	Karte	Höhe m ü. NHN	Regen- messer	Beobachtung seit	Regen- schreiber	Beobachtung seit	mittlerer Jahres- niederschlag		
		Nr.						Jahresreihe von bis	Niederschlag mm	
Arnsberg Kläranlage	27617939	4514/32	175	ja	1987	ja	1987	1985/2023	828	
Biggetalsperre	2766487	4813/26	311	ja	1966	ja	1966	1966/2023	1.120	
Brilon-Scharfenberg Kläranlage	276214	4517/22	379	ja	2006	ja	2006	2007/2023	1.000	
Drolshagen-Bleche Kläranlage *****	2766464	4912/15	420	ja	1930	ja	2018	1931/2023	1.461	
Duisburg Kläranlage	276999	4506/21	25	ja	1983	nein	1938	1984/2023	782	
Ennepetalsperre	27688519	4710/18	279	ja	1951	ja	1951	1951/2023	1.246	
Essen-Burgaltendorf Kläranlage *	276952	4508/29	62	ja	1984	nein		1985/2023	894	
Essen-Kettwig Kläranlage	276991	4607/10	41	ja	1984	nein		1985/2023	920	
Essen-Kupferdreh Kläranlage	276959	4508/33	60	ja	1984	nein		1985/2023	915	
Essen-Ruhrhaus	277281	4508/19	93	ja	1959	ja	1959	1948/2023	877	
Essen-Steele Kläranlage	276957	4508/21	61	nein		ja	1947	1985/2023	918	
Finnentrop Kläranlage **	276653	4713/36	225	ja	1953	nein		1985/2023	1.074	
Fürwiggetalsperre	27668119	4812/14	442	nein		ja	2002	2003/2023	1.281	
Hagen-Hohenlimburg	2766995	4611/08	113	nein		ja	1994	2002/2023	866	
Hagen Kläranlage	2769131	4510/34	91	ja	1984	nein		1985/2023	841	
Heiligenhaus-Abtsküche Kläranlage	27698	4607/24	130	ja	1979	nein		1985/2023	1.020	
Hennetalsperre	2761451	4615/22	348	ja	1983	ja	1983	1932/2023	994	
Holthausen	2766162	4815/06	495	ja	1957	ja	1957	1958/2023	1.049	
Lennestadt-Meggen Kläranlage	2766319	4814/26	260	ja	1984	nein		1985/2023	998	
Listertalsperre	2766471	4913/01	324	ja	1923	ja	2009	1931/2023	1.123	
Möhnetalsperre	2762713	4514/03	238	ja	1951	ja	1939	1931/2023	840	
Möhnesee-Neuhaus	276267	4514/18	241	ja	1978	ja	1978	1979/2023	943	
Olpe Kläranlage	276643	4913/25	305	ja	1966	ja	1966	1931/2023	1.185	
Schmallenberg Kläranlage	2766191	4815/16	364	ja	1995	ja	1995	1995/2023	1.056	
Sorpetalsperre	2761889	4613/17	310	ja	1959	ja	1959	1931/2023	979	
Versetalsperre	2766831	4712/26	390	ja	1951	ja	1951	1951/2023	1.200	
Völlinghausen	276255	4515/08	216	ja	1967	ja	1967	1958/2023	938	
Volmetal Kläranlage ***	2768579	4711/26	251	ja	1984	ja	1949	2001/2023	1.162	
Wetter	2769133	4610/03	85	nein		ja	2003	2004/2023	881	
Willertshagen-Volmehof	276811	4912/01	485	ja	1930	nein		1931/2023	1.392	
Winterberg-Niedersfeld Kläranlage****	2761131	4717/11	492	ja	2014	ja	2014	2014/2023	1.158	

Stand: November 2023

Bemerkungen:


* vorher Bochum-Dahlhausen-Pumpw. (bis Oktober 1998)

** vorher Rönkhausen (bis Oktober 1998)

*** vorher Lüdenscheid-Elspetal-Kläranlage (bis April 2000)

**** als Ersatz für die aufgegebene Station Siedlinghausen

***** vorher Drolshagen-Bleche (bis Oktober 2018)

